Maple 2018.2 Integration Test Results
on the problems in "8 special functions"
Test results for the 82 problems in "8.1 Error functions.txt"
Problem 10: Unable to integrate problem.

$$
\int x^{3} \operatorname{erf}(b x)^{2} \mathrm{~d} x
$$

Optimal(type 4, 112 leaves, 8 steps):

$$
\frac{1}{2 b^{4} \mathrm{e}^{2 b^{2} x^{2}} \pi}+\frac{x^{2}}{4 b^{2} \mathrm{e}^{2 b^{2} x^{2}} \pi}-\frac{3 \operatorname{erf}(b x)^{2}}{16 b^{4}}+\frac{x^{4} \operatorname{erf}(b x)^{2}}{4}+\frac{3 x \operatorname{erf}(b x)}{4 b^{3} \mathrm{e}^{b^{2} x^{2} \sqrt{\pi}}}+\frac{x^{3} \operatorname{erf}(b x)}{2 b \mathrm{e}^{b^{2} x^{2}} \sqrt{\pi}}
$$

Result(type 8, 12 leaves):

$$
\int x^{3} \operatorname{erf}(b x)^{2} d x
$$

Problem 12: Unable to integrate problem.

$$
\int(d x+c)^{2} \operatorname{erf}(b x+a)^{2} \mathrm{~d} x
$$

Optimal (type 4, 345 leaves, 16 steps):

$$
\begin{aligned}
& \frac{d(-a d+b c)}{b^{3} \mathrm{e}^{2(b x+a)^{2}} \pi}+\frac{d^{2}(b x+a)}{3 b^{3} \mathrm{e}^{2(b x+a)^{2}} \pi}-\frac{d(-a d+b c) \operatorname{erf}(b x+a)^{2}}{2 b^{3}}+\frac{(-a d+b c)^{2}(b x+a) \operatorname{erf}(b x+a)^{2}}{b^{3}}+\frac{d(-a d+b c)(b x+a)^{2} \operatorname{erf}(b x+a)^{2}}{b^{3}} \\
& \quad+\frac{d^{2}(b x+a)^{3} \operatorname{erf}(b x+a)^{2}}{3 b^{3}}-\frac{(-a d+b c)^{2} \operatorname{erf}((b x+a) \sqrt{2}) \sqrt{2}}{\sqrt{\pi} b^{3}}+\frac{2 d^{2} \operatorname{erf}(b x+a)}{3 b^{3} \mathrm{e}^{(b x+a)^{2} \sqrt{\pi}}+\frac{2(-a d+b c)^{2} \operatorname{erf}(b x+a)}{b^{3} \mathrm{e}^{(b x+a)^{2} \sqrt{\pi}}}} \begin{array}{l}
b^{3} \mathrm{e}^{(b x+a)^{2}} \sqrt{\pi}
\end{array}+\frac{2 d(-a d+b c)(b x+a) \operatorname{erf}(b x+a)}{3 b^{3} \mathrm{e}^{(b x+a)^{2} \sqrt{\pi}}+\frac{2 d^{2}(b x+a)^{2} \operatorname{erf}(b x+a)}{12 b^{3} \sqrt{\pi}}-\frac{5 d^{2} \operatorname{erf}((b x+a) \sqrt{2}) \sqrt{2}}{1}} .
\end{aligned}
$$

Result (type 8, 18 leaves):

$$
\int(d x+c)^{2} \operatorname{erf}(b x+a)^{2} \mathrm{~d} x
$$

Problem 14: Unable to integrate problem.

$$
\int x \operatorname{erf}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right) d x
$$

Optimal(type 4, 91 leaves, 5 steps):

$$
\frac{x^{2} \operatorname{erf}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)}{2}-\frac{\mathrm{e}^{\frac{-2 a b d^{2} n+1}{b^{2} d^{2} n^{2}}} x^{2} \operatorname{erf}\left(\frac{a b d^{2}-\frac{1}{n}+b^{2} d^{2} \ln \left(c x^{n}\right)}{b d}\right)}{2\left(c x^{n}\right)^{\frac{2}{n}}}
$$

Result(type 8, 17 leaves):

$$
\int x \operatorname{erf}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right) \mathrm{d} x
$$

Problem 15: Unable to integrate problem.

$$
\int \frac{\operatorname{erf}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)}{x^{3}} \mathrm{~d} x
$$

Optimal(type 4, 90 leaves, 5 steps):

$$
-\frac{\operatorname{erf}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)}{2 x^{2}}+\frac{\mathrm{e}^{\frac{2 a b d^{2} n+1}{b^{2} d^{2} n^{2}}}\left(c x^{n}\right)^{\frac{2}{n}} \operatorname{erf}\left(\frac{1+a b d^{2} n+b^{2} d^{2} n \ln \left(c x^{n}\right)}{b d n}\right)}{2 x^{2}}
$$

Result(type 8, 19 leaves):

$$
\int \frac{\operatorname{erf}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)}{x^{3}} \mathrm{~d} x
$$

Problem 17: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{-b^{2} x^{2}+c}}{\operatorname{erf}(b x)} \mathrm{d} x
$$

Optimal(type 4, 15 leaves, 2 steps):

$$
\frac{\mathrm{e}^{c} \ln (\operatorname{erf}(b x)) \sqrt{\pi}}{2 b}
$$

Result(type 8, 20 leaves):

$$
\int \frac{\mathrm{e}^{-b^{2} x^{2}+c}}{\operatorname{erf}(b x)} \mathrm{d} x
$$

Problem 23: Unable to integrate problem.

$$
\int \mathrm{e}^{b^{2} x^{2}+c} x^{4} \operatorname{erf}(b x) \mathrm{d} x
$$

Optimal(type 5, 96 leaves, 7 steps):

$$
-\frac{3 \mathrm{e}^{b^{2} x^{2}+c} x \operatorname{erf}(b x)}{4 b^{4}}+\frac{\mathrm{e}^{b^{2} x^{2}+c} x^{3} \operatorname{erf}(b x)}{2 b^{2}}+\frac{3 \mathrm{e}^{c} x^{2}}{4 b^{3} \sqrt{\pi}}-\frac{\mathrm{e}^{c} x^{4}}{4 b \sqrt{\pi}}+\frac{3 \mathrm{e}^{c} x^{2} \text { HypergeometricPFQ }\left([1,1],\left[\frac{3}{2}, 2\right], b^{2} x^{2}\right)}{4 b^{3} \sqrt{\pi}}
$$

Result(type 8, 20 leaves):

$$
\int \mathrm{e}^{b^{2} x^{2}+c} x^{4} \operatorname{erf}(b x) \mathrm{d} x
$$

Problem 25: Unable to integrate problem.

$$
\int \frac{x^{4} \operatorname{erf}(b x)}{\mathrm{e}^{b^{2} x^{2}}} \mathrm{~d} x
$$

Optimal(type 4, 98 leaves, 7 steps):

$$
-\frac{3 x \operatorname{erf}(b x)}{4 b^{4} \mathrm{e}^{b^{2} x^{2}}}-\frac{x^{3} \operatorname{erf}(b x)}{2 b^{2} \mathrm{e}^{b^{2} x^{2}}}-\frac{1}{2 b^{5} \mathrm{e}^{2 b^{2} x^{2}} \sqrt{\pi}}-\frac{x^{2}}{4 b^{3} \mathrm{e}^{2 b^{2} x^{2}} \sqrt{\pi}}+\frac{3 \operatorname{erf}(b x)^{2} \sqrt{\pi}}{16 b^{5}}
$$

Result(type 8, 20 leaves):

$$
\int \frac{x^{4} \operatorname{erf}(b x)}{\mathrm{e}^{b^{2} x^{2}}} \mathrm{~d} x
$$

Problem 28: Unable to integrate problem.

$$
\int \operatorname{erf}(b x) \sinh \left(b^{2} x^{2}+c\right) \mathrm{d} x
$$

Optimal(type 5, 44 leaves, 4 steps):

$$
\frac{b \mathrm{e}^{c} x^{2} \text { Hypergeometric } P F Q\left([1,1],\left[\frac{3}{2}, 2\right], b^{2} x^{2}\right)}{2 \sqrt{\pi}}-\frac{\operatorname{erf}(b x)^{2} \sqrt{\pi}}{8 b \mathrm{e}^{c}}
$$

Result(type 8, 17 leaves):

$$
\int \operatorname{erf}(b x) \sinh \left(b^{2} x^{2}+c\right) \mathrm{d} x
$$

Problem 29: Unable to integrate problem.

$$
\int-\operatorname{erf}(b x) \sinh \left(b^{2} x^{2}-c\right) \mathrm{d} x
$$

Optimal(type 5, 44 leaves, 4 steps):

$$
-\frac{b x^{2} \text { HypergeometricPFQ }\left([1,1],\left[\frac{3}{2}, 2\right], b^{2} x^{2}\right)}{2 \mathrm{e}^{c} \sqrt{\pi}}+\frac{\mathrm{e}^{c} \operatorname{erf}(b x)^{2} \sqrt{\pi}}{8 b}
$$

Result(type 8, 20 leaves):

$$
\int-\operatorname{erf}(b x) \sinh \left(b^{2} x^{2}-c\right) \mathrm{d} x
$$

Problem 30: Unable to integrate problem.

$$
\int \cosh \left(b^{2} x^{2}+c\right) \operatorname{erf}(b x) \mathrm{d} x
$$

Optimal(type 5, 44 leaves, 4 steps):

$$
\frac{b \mathrm{e}^{c} x^{2} \text { HypergeometricPFQ }\left([1,1],\left[\frac{3}{2}, 2\right], b^{2} x^{2}\right)}{2 \sqrt{\pi}}+\frac{\operatorname{erf}(b x)^{2} \sqrt{\pi}}{8 b \mathrm{e}^{c}}
$$

Result(type 8, 17 leaves):

$$
\int \cosh \left(b^{2} x^{2}+c\right) \operatorname{erf}(b x) \mathrm{d} x
$$

Problem 33: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)^{3} \operatorname{erfc}(b x+a) \mathrm{d} x
$$

Optimal(type 4, 260 leaves, 12 steps):
$\frac{3 d^{3} \operatorname{erf}(b x+a)}{16 b^{4}}+\frac{3 d(-a d+b c)^{2} \operatorname{erf}(b x+a)}{4 b^{4}}+\frac{(-a d+b c)^{4} \operatorname{erf}(b x+a)}{4 b^{4} d}+\frac{(d x+c)^{4} \operatorname{erfc}(b x+a)}{4 d}-\frac{d^{2}(-a d+b c)}{b^{4} \mathrm{e}^{(b x+a)^{2}} \sqrt{\pi}}-\frac{(-a d+b c)^{3}}{b^{4} \mathrm{e}^{(b x+a)^{2}} \sqrt{\pi}}$

$$
-\frac{3 d^{3}(b x+a)}{8 b^{4} \mathrm{e}^{(b x+a)^{2}} \sqrt{\pi}}-\frac{3 d(-a d+b c)^{2}(b x+a)}{2 b^{4} \mathrm{e}^{(b x+a)^{2}} \sqrt{\pi}}-\frac{d^{2}(-a d+b c)(b x+a)^{2}}{b^{4} \mathrm{e}^{(b x+a)^{2}} \sqrt{\pi}}-\frac{d^{3}(b x+a)^{3}}{4 b^{4} \mathrm{e}^{(b x+a)^{2}} \sqrt{\pi}}
$$

Result(type 4, 728 leaves):
$\frac{1}{b}\left(\frac{d^{3} \operatorname{erfc}(b x+a)(b x+a)^{4}}{4 b^{3}}-\frac{d^{3} \operatorname{erfc}(b x+a)(b x+a)^{3} a}{b^{3}}+\frac{d^{2} \operatorname{erfc}(b x+a)(b x+a)^{3} c}{b^{2}}+\frac{3 d^{3} \operatorname{erfc}(b x+a)(b x+a)^{2} a^{2}}{2 b^{3}}\right.$
$-\frac{3 d^{2} \operatorname{erfc}(b x+a)(b x+a)^{2} a c}{b^{2}}+\frac{3 d \operatorname{erfc}(b x+a)(b x+a)^{2} c^{2}}{2 b}-\frac{d^{3} \operatorname{erfc}(b x+a)(b x+a) a^{3}}{b^{3}}+\frac{3 d^{2} \operatorname{erfc}(b x+a)(b x+a) a^{2} c}{b^{2}}$
$-\frac{3 d \operatorname{erfc}(b x+a)(b x+a) a c^{2}}{b}+\operatorname{erfc}(b x+a)(b x+a) c^{3}+\frac{d^{3} \operatorname{erfc}(b x+a) a^{4}}{4 b^{3}}-\frac{d^{2} \operatorname{erfc}(b x+a) a^{3} c}{b^{2}}+\frac{3 d \operatorname{erfc}(b x+a) a^{2} c^{2}}{2 b}-\operatorname{erfc}(b x$ $+a) a c^{3}+\frac{b \operatorname{erfc}(b x+a) c^{4}}{4 d}+\frac{1}{2 \sqrt{\pi} b^{3} d}\left(d^{4}\left(-\frac{(b x+a)^{3}}{2 \mathrm{e}^{(b x+a)^{2}}}-\frac{3(b x+a)}{4 \mathrm{e}^{(b x+a)^{2}}}+\frac{3 \sqrt{\pi} \operatorname{erf}(b x+a)}{8}\right)+\frac{a^{4} d^{4} \sqrt{\pi} \operatorname{erf}(b x+a)}{2}\right.$

$$
\begin{aligned}
& +\frac{b^{4} c^{4} \sqrt{\pi} \operatorname{erf}(b x+a)}{2}+\frac{2 a^{3} d^{4}}{\mathrm{e}^{(b x+a)^{2}}}+6 a^{2} d^{4}\left(-\frac{b x+a}{2 \mathrm{e}^{(b x+a)^{2}}}+\frac{\sqrt{\pi} \operatorname{erf}(b x+a)}{4}\right)-4 a d^{4}\left(-\frac{(b x+a)^{2}}{2 \mathrm{e}^{(b x+a)^{2}}}-\frac{1}{2 \mathrm{e}^{(b x+a)^{2}}}\right)-\frac{2 b^{3} c^{3} d}{\mathrm{e}^{(b x+a)^{2}}}+6 b^{2} c^{2} d^{2} \\
& \left.-\frac{b x+a}{2 \mathrm{e}^{(b x+a)^{2}}}+\frac{\sqrt{\pi} \operatorname{erf}(b x+a)}{4}\right)+4 b c d^{3}\left(-\frac{(b x+a)^{2}}{2 \mathrm{e}^{(b x+a)^{2}}}-\frac{1}{2 \mathrm{e}^{(b x+a)^{2}}}\right)-2 a b^{3} c^{3} d \sqrt{\pi} \operatorname{erf}(b x+a)+3 a^{2} b^{2} c^{2} d^{2} \sqrt{\pi} \operatorname{erf}(b x+a) \\
& \left.\left.-2 a^{3} b c d^{3} \sqrt{\pi} \operatorname{erf}(b x+a)+\frac{6 a b^{2} c^{2} d^{2}}{\mathrm{e}^{(b x+a)^{2}}}-\frac{6 a^{2} b c d^{3}}{\mathrm{e}^{(b x+a)^{2}}}-12 a b c d^{3}\left(-\frac{b x+a}{2 \mathrm{e}^{(b x+a)^{2}}}+\frac{\sqrt{\pi} \operatorname{erf}(b x+a)}{4}\right)\right)\right)
\end{aligned}
$$

Problem 34: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)^{2} \operatorname{erfc}(b x+a) \mathrm{d} x
$$

Optimal(type 4, 172 leaves, 9 steps):

$$
\begin{aligned}
& \frac{d(-a d+b c) \operatorname{erf}(b x+a)}{2 b^{3}}+\frac{(-a d+b c)^{3} \operatorname{erf}(b x+a)}{3 b^{3} d}+\frac{(d x+c)^{3} \operatorname{erfc}(b x+a)}{3 d}-\frac{d^{2}}{3 b^{3} \mathrm{e}^{(b x+a)^{2} \sqrt{\pi}}}-\frac{(-a d+b c)^{2}}{b^{3} \mathrm{e}^{(b x+a)^{2} \sqrt{\pi}}}-\frac{d(-a d+b c)(b x+a)}{b^{3} \mathrm{e}^{(b x+a)^{2}} \sqrt{\pi}} \\
& \quad-\frac{d^{2}(b x+a)^{2}}{3 b^{3} \mathrm{e}^{(b x+a)^{2}} \sqrt{\pi}}
\end{aligned}
$$

Result(type 4, 427 leaves):
$\frac{1}{b}\left(\frac{d^{2} \operatorname{erfc}(b x+a)(b x+a)^{3}}{3 b^{2}}-\frac{d^{2} \operatorname{erfc}(b x+a)(b x+a)^{2} a}{b^{2}}+\frac{d \operatorname{erfc}(b x+a)(b x+a)^{2} c}{b}+\frac{d^{2} \operatorname{erfc}(b x+a)(b x+a) a^{2}}{b^{2}}\right.$
$-\frac{2 d \operatorname{erfc}(b x+a)(b x+a) a c}{b}+\operatorname{erfc}(b x+a)(b x+a) c^{2}-\frac{d^{2} \operatorname{erfc}(b x+a) a^{3}}{3 b^{2}}+\frac{d \operatorname{erfc}(b x+a) a^{2} c}{b}-\operatorname{erfc}(b x+a) a c^{2}$
$+\frac{b \operatorname{erfc}(b x+a) c^{3}}{3 d}+\frac{1}{3 \sqrt{\pi} b^{2} d}\left(2\left(d^{3}\left(-\frac{(b x+a)^{2}}{2 \mathrm{e}^{(b x+a)^{2}}}-\frac{1}{2 \mathrm{e}^{(b x+a)^{2}}}\right)+\frac{b^{3} c^{3} \sqrt{\pi} \operatorname{erf}(b x+a)}{2}-\frac{a^{3} d^{3} \sqrt{\pi} \operatorname{erf}(b x+a)}{2}-\frac{3 a^{2} d^{3}}{2 \mathrm{e}^{(b x+a)^{2}}}-3 a d^{3}(\right.\right.$ $\left.-\frac{b x+a}{2 \mathrm{e}^{(b x+a)^{2}}}+\frac{\sqrt{\pi} \operatorname{erf}(b x+a)}{4}\right)-\frac{3 b^{2} c^{2} d}{2 \mathrm{e}^{(b x+a)^{2}}}+3 b c d^{2}\left(-\frac{b x+a}{2 \mathrm{e}^{(b x+a)^{2}}}+\frac{\sqrt{\pi} \operatorname{erf}(b x+a)}{4}\right)-\frac{3 a b^{2} c^{2} d \sqrt{\pi} \operatorname{erf}(b x+a)}{2}$
$\left.\left.\left.+\frac{3 a^{2} b c d^{2} \sqrt{\pi} \operatorname{erf}(b x+a)}{2}+\frac{3 a b c d^{2}}{\mathrm{e}^{(b x+a)^{2}}}\right)\right)\right)$

Problem 38: Unable to integrate problem.

$$
\int x^{3} \operatorname{erfc}(b x)^{2} \mathrm{~d} x
$$

Optimal(type 4, 112 leaves, 8 steps):

$$
\frac{1}{2 b^{4} \mathrm{e}^{2 b^{2} x^{2}} \pi}+\frac{x^{2}}{4 b^{2} \mathrm{e}^{2 b^{2} x^{2}} \pi}-\frac{3 \operatorname{erfc}(b x)^{2}}{16 b^{4}}+\frac{x^{4} \operatorname{erfc}(b x)^{2}}{4}-\frac{3 x \operatorname{erfc}(b x)}{4 b^{3} \mathrm{e}^{b^{2} x^{2}} \sqrt{\pi}}-\frac{x^{3} \operatorname{erfc}(b x)}{2 b \mathrm{e}^{b^{2} x^{2}} \sqrt{\pi}}
$$

Result(type 8, 12 leaves):

$$
\int x^{3} \operatorname{erfc}(b x)^{2} \mathrm{~d} x
$$

Problem 39: Unable to integrate problem.

$$
\int \frac{\operatorname{erfc}(b x)^{2}}{x^{7}} \mathrm{~d} x
$$

Optimal(type 4, 157 leaves, 12 steps):

$$
-\frac{b^{2}}{15 \mathrm{e}^{2 b^{2} x^{2}} \pi x^{4}}+\frac{2 b^{4}}{9 \mathrm{e}^{2 b^{2} x^{2}} \pi x^{2}}+\frac{28 b^{6} \operatorname{Ei}\left(-2 b^{2} x^{2}\right)}{45 \pi}-\frac{4 b^{6} \operatorname{erfc}(b x)^{2}}{45}-\frac{\operatorname{erfc}(b x)^{2}}{6 x^{6}}+\frac{2 b \operatorname{erfc}(b x)}{15 \mathrm{e}^{b^{2} x^{2} x^{5} \sqrt{\pi}}-\frac{4 b^{3} \operatorname{erfc}(b x)}{45 \mathrm{e}^{b^{2} x^{2}} x^{3} \sqrt{\pi}}+\frac{8 b^{5} \operatorname{erfc}(b x)}{45 \mathrm{e}^{b^{2} x^{2} x \sqrt{\pi}}} .5(b)}
$$

Result(type 8, 12 leaves):

$$
\int \frac{\operatorname{erfc}(b x)^{2}}{x^{7}} \mathrm{~d} x
$$

Problem 42: Unable to integrate problem.

$$
\int \frac{\operatorname{erfc}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)}{x^{2}} \mathrm{~d} x
$$

Optimal(type 4, 88 leaves, 5 steps):

$$
-\frac{\mathrm{e}^{\frac{1}{4 b^{2} d^{2} n^{2}}+\frac{a}{b n}}\left(c x^{n}\right)^{\frac{1}{n}} \operatorname{erf}\left(\frac{2 a b d^{2}+\frac{1}{n}+2 b^{2} d^{2} \ln \left(c x^{n}\right)}{2 b d}\right)}{x}-\frac{\operatorname{erfc}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)}{x}
$$

Result(type 8, 19 leaves):

$$
\int \frac{\operatorname{erfc}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)}{x^{2}} \mathrm{~d} x
$$

Problem 43: Unable to integrate problem.

$$
\int \frac{\operatorname{erfc}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)}{x^{3}} \mathrm{~d} x
$$

Optimal(type 4, 90 leaves, 5 steps):

$$
-\frac{\mathrm{e}^{\frac{2 a b d^{2} n+1}{b^{2} d^{2} n^{2}}}\left(c x^{n}\right)^{\frac{2}{n}} \operatorname{erf}\left(\frac{1+a b d^{2} n+b^{2} d^{2} n \ln \left(c x^{n}\right)}{b d n}\right)}{2 x^{2}}-\frac{\operatorname{erfc}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)}{2 x^{2}}
$$

Result(type 8, 19 leaves):

$$
\int \frac{\operatorname{erfc}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)}{x^{3}} \mathrm{~d} x
$$

Problem 44: Unable to integrate problem.

$$
\int \frac{\mathrm{e}^{-b^{2} x^{2}+c}}{\operatorname{erfc}(b x)} \mathrm{d} x
$$

Optimal(type 4, 15 leaves, 2 steps):

$$
-\frac{\mathrm{e}^{c} \ln (\operatorname{erfc}(b x)) \sqrt{\pi}}{2 b}
$$

Result(type 8, 20 leaves):

$$
\int \frac{\mathrm{e}^{-b^{2} x^{2}+c}}{\operatorname{erfc}(b x)} \mathrm{d} x
$$

Problem 45: Unable to integrate problem.

$$
\int \mathrm{e}^{-b^{2} x^{2}+c} \operatorname{erfc}(b x)^{n} \mathrm{~d} x
$$

Optimal(type 4, 23 leaves, 2 steps):

$$
-\frac{\mathrm{e}^{c} \operatorname{erfc}(b x)^{1+n} \sqrt{\pi}}{2 b(1+n)}
$$

Result(type 8, 20 leaves):

$$
\int \mathrm{e}^{-b^{2} x^{2}+c} \operatorname{erfc}(b x)^{n} \mathrm{~d} x
$$

Problem 49: Unable to integrate problem.

$$
\int \frac{\operatorname{erfc}(b x)}{\mathrm{e}^{b^{2} x^{2}} x^{4}} \mathrm{~d} x
$$

Optimal(type 4, 93 leaves, 7 steps):

$$
-\frac{\operatorname{erfc}(b x)}{3 \mathrm{e}^{b^{2} x^{2} x^{3}}}+\frac{2 b^{2} \operatorname{erfc}(b x)}{3 \mathrm{e}^{b^{2} x^{2} x}}+\frac{b}{3 \mathrm{e}^{2 b^{2} x^{2}} x^{2} \sqrt{\pi}}+\frac{4 b^{3} \operatorname{Ei}\left(-2 b^{2} x^{2}\right)}{3 \sqrt{\pi}}-\frac{b^{3} \operatorname{erfc}(b x)^{2} \sqrt{\pi}}{3}
$$

Result(type 8, 20 leaves):

$$
\int \frac{\operatorname{erfc}(b x)}{\mathrm{e}^{b^{2} x^{2}} x^{4}} \mathrm{~d} x
$$

Problem 50: Result more than twice size of optimal antiderivative.

$$
\int \mathrm{e}^{d x^{2}+c} x \operatorname{erfc}(b x+a) \mathrm{d} x
$$

Optimal(type 4, 76 leaves, 3 steps):

$$
\frac{\mathrm{e}^{d x^{2}+c} \operatorname{erfc}(b x+a)}{2 d}+\frac{b \mathrm{e}^{c+\frac{a^{2} d}{b^{2}-d}} \operatorname{erf}\left(\frac{a b+\left(b^{2}-d\right) x}{\sqrt{b^{2}-d}}\right)}{2 d \sqrt{b^{2}-d}}
$$

Result(type 4, 174 leaves):
$\frac{1}{b}\left(\frac{b \mathrm{e}^{\frac{(b x+a)^{2} d}{b^{2}}-\frac{2 a d(b x+a)}{b^{2}}+\frac{a^{2} d}{b^{2}}+c}}{2 d}-\frac{\operatorname{erf}(b x+a) b \mathrm{e}^{\frac{(b x+a)^{2} d}{b^{2}}-\frac{2 a d(b x+a)}{b^{2}}}+\frac{a^{2} d}{b^{2}}+c}{2 d}\right.$

$$
\left.+\frac{b \mathrm{e}^{\frac{a^{2} d}{b^{2}}+c-\frac{a^{2} d^{2}}{b^{4}\left(-1+\frac{d}{b^{2}}\right)}} \operatorname{erf}\left(\sqrt{1-\frac{d}{b^{2}}}(b x+a)+\frac{a d}{b^{2} \sqrt{1-\frac{d}{b^{2}}}}\right)}{2 d \sqrt{1-\frac{d}{b^{2}}}}\right)
$$

Problem 52: Unable to integrate problem.

$$
\int-\operatorname{erfc}(b x) \sin \left(-c+\mathrm{I} b^{2} x^{2}\right) \mathrm{d} x
$$

Optimal(type 5, 70 leaves, 6 steps):

$$
\frac{\mathrm{I} b \mathrm{e}^{\mathrm{I} c} x^{2} \text { HypergeometricPFQ }\left([1,1],\left[\frac{3}{2}, 2\right], b^{2} x^{2}\right)}{2 \sqrt{\pi}}-\frac{\mathrm{I} \operatorname{erfc}(b x)^{2} \sqrt{\pi}}{8 b \mathrm{e}^{\mathrm{I} c}}-\frac{\mathrm{I} \mathrm{e}^{\mathrm{I} c} \operatorname{erfi}(b x) \sqrt{\pi}}{4 b}
$$

Result(type 8, 22 leaves):

$$
\int-\operatorname{erfc}(b x) \sin \left(-c+\mathrm{I} b^{2} x^{2}\right) \mathrm{d} x
$$

Problem 53: Unable to integrate problem.

$$
\int \cosh \left(b^{2} x^{2}+c\right) \operatorname{erfc}(b x) \mathrm{d} x
$$

Optimal(type 5, 58 leaves, 6 steps):

$$
-\frac{b \mathrm{e}^{c} x^{2} \text { HypergeometricPFQ }\left([1,1],\left[\frac{3}{2}, 2\right], b^{2} x^{2}\right)}{2 \sqrt{\pi}}-\frac{\operatorname{erfc}(b x)^{2} \sqrt{\pi}}{8 b \mathrm{e}^{c}}+\frac{\mathrm{e}^{c} \operatorname{erfi}(b x) \sqrt{\pi}}{4 b}
$$

Result(type 8, 17 leaves):

$$
\int \cosh \left(b^{2} x^{2}+c\right) \operatorname{erfc}(b x) \mathrm{d} x
$$

Problem 58: Result more than twice size of optimal antiderivative.

$$
\int(d x+c)^{3} \operatorname{erfi}(b x+a) \mathrm{d} x
$$

Optimal(type 4, 247 leaves, 12 steps):

$$
\begin{aligned}
& -\frac{3 d^{3} \operatorname{erfi}(b x+a)}{16 b^{4}}+\frac{3 d(-a d+b c)^{2} \operatorname{erfi}(b x+a)}{4 b^{4}}-\frac{(-a d+b c)^{4} \operatorname{erfi}(b x+a)}{4 b^{4} d}+\frac{(d x+c)^{4} \operatorname{erfi}(b x+a)}{4 d}+\frac{d^{2}(-a d+b c) \mathrm{e}^{(b x+a)^{2}}}{b^{4} \sqrt{\pi}} \\
& -\frac{(-a d+b c)^{3} \mathrm{e}^{(b x+a)^{2}}}{b^{4} \sqrt{\pi}}+\frac{3 d^{3} \mathrm{e}^{(b x+a)^{2}}(b x+a)}{8 b^{4} \sqrt{\pi}}-\frac{3 d(-a d+b c)^{2} \mathrm{e}^{(b x+a)^{2}}(b x+a)}{2 b^{4} \sqrt{\pi}}-\frac{d^{2}(-a d+b c) \mathrm{e}^{(b x+a)^{2}}(b x+a)^{2}}{b^{4} \sqrt{\pi}} \\
& \quad-\frac{d^{3} \mathrm{e}^{(b x+a)^{2}}(b x+a)^{3}}{4 b^{4} \sqrt{\pi}}
\end{aligned}
$$

Result(type 4, 702 leaves):
$\frac{1}{b}\left(\frac{d^{3} \operatorname{erfi}(b x+a)(b x+a)^{4}}{4 b^{3}}-\frac{d^{3} \operatorname{erfi}(b x+a)(b x+a)^{3} a}{b^{3}}+\frac{d^{2} \operatorname{erfi}(b x+a)(b x+a)^{3} c}{b^{2}}+\frac{3 d^{3} \operatorname{erfi}(b x+a)(b x+a)^{2} a^{2}}{2 b^{3}}\right.$
$-\frac{3 d^{2} \operatorname{erfi}(b x+a)(b x+a)^{2} a c}{b^{2}}+\frac{3 d \operatorname{erfi}(b x+a)(b x+a)^{2} c^{2}}{2 b}-\frac{d^{3} \operatorname{erfi}(b x+a)(b x+a) a^{3}}{b^{3}}+\frac{3 d^{2} \operatorname{erfi}(b x+a)(b x+a) a^{2} c}{b^{2}}$
$-\frac{3 d \operatorname{erfi}(b x+a)(b x+a) a c^{2}}{b}+\operatorname{erfi}(b x+a)(b x+a) c^{3}+\frac{d^{3} \operatorname{erfi}(b x+a) a^{4}}{4 b^{3}}-\frac{d^{2} \operatorname{erfi}(b x+a) a^{3} c}{b^{2}}+\frac{3 d \operatorname{erfi}(b x+a) a^{2} c^{2}}{2 b}-\operatorname{erfi}(b x+a) a c^{3}$
$+\frac{b \operatorname{erfi}(b x+a) c^{4}}{4 d}-\frac{1}{2 b^{3} d \sqrt{\pi}}\left(d^{4}\left(\frac{\mathrm{e}^{(b x+a)^{2}}(b x+a)^{3}}{2}-\frac{3(b x+a) \mathrm{e}^{(b x+a)^{2}}}{4}+\frac{3 \sqrt{\pi} \operatorname{erfi}(b x+a)}{8}\right)+\frac{a^{4} d^{4} \sqrt{\pi} \operatorname{erfi}(b x+a)}{2}\right.$
$+\frac{b^{4} c^{4} \sqrt{\pi} \operatorname{erfi}(b x+a)}{2}-2 a^{3} d^{4} \mathrm{e}^{(b x+a)^{2}}+6 a^{2} d^{4}\left(\frac{(b x+a) \mathrm{e}^{(b x+a)^{2}}}{2}-\frac{\sqrt{\pi} \operatorname{erfi}(b x+a)}{4}\right)-4 a d^{4}\left(\frac{(b x+a)^{2} \mathrm{e}^{(b x+a)^{2}}}{2}-\frac{\mathrm{e}^{(b x+a)^{2}}}{2}\right)$

$$
\begin{aligned}
& +2 b^{3} c^{3} d \mathrm{e}^{(b x+a)^{2}}+6 b^{2} c^{2} d^{2}\left(\frac{(b x+a) \mathrm{e}^{(b x+a)^{2}}}{2}-\frac{\sqrt{\pi} \operatorname{erfi}(b x+a)}{4}\right)+4 b c d^{3}\left(\frac{(b x+a)^{2} \mathrm{e}^{(b x+a)^{2}}}{2}-\frac{\mathrm{e}^{(b x+a)^{2}}}{2}\right)-2 a b^{3} c^{3} d \sqrt{\pi} \operatorname{erfi}(b x+a) \\
& +3 a^{2} b^{2} c^{2} d^{2} \sqrt{\pi} \operatorname{erfi}(b x+a)-2 a^{3} b c d^{3} \sqrt{\pi} \operatorname{erfi}(b x+a)-6 a b^{2} c^{2} d^{2} \mathrm{e}^{(b x+a)^{2}}+6 a^{2} b c d^{3} \mathrm{e}^{(b x+a)^{2}}-12 a b c d^{3}\left(\frac{(b x+a) \mathrm{e}^{(b x+a)^{2}}}{2}\right. \\
& \left.\left.-\frac{\sqrt{\pi} \operatorname{erfi}(b x+a)}{4}\right)\right)
\end{aligned}
$$

Problem 60: Unable to integrate problem.

$$
\int x^{5} \operatorname{erfi}(b x)^{2} \mathrm{~d} x
$$

Optimal(type 4, 147 leaves, 12 steps):

$$
\frac{11 \mathrm{e}^{2 b^{2} x^{2}}}{12 b^{6} \pi}-\frac{7 \mathrm{e}^{2 b^{2} x^{2} x^{2}}}{12 b^{4} \pi}+\frac{\mathrm{e}^{2 b^{2} x^{2}} x^{4}}{6 b^{2} \pi}+\frac{5 \operatorname{erfi}(b x)^{2}}{16 b^{6}}+\frac{x^{6} \operatorname{erfi}(b x)^{2}}{6}-\frac{5 \mathrm{e}^{b^{2} x^{2} x \operatorname{erfi}(b x)}}{4 b^{5} \sqrt{\pi}}+\frac{5 \mathrm{e}^{b^{2} x^{2}} x^{3} \operatorname{erfi}(b x)}{6 b^{3} \sqrt{\pi}}-\frac{\mathrm{e}^{b^{2} x^{2} x^{5} \operatorname{erfi}(b x)}}{3 b \sqrt{\pi}}
$$

Result(type 8, 12 leaves):

$$
\int x^{5} \operatorname{erfi}(b x)^{2} \mathrm{~d} x
$$

Problem 61: Unable to integrate problem.

$$
\int x \operatorname{erfi}(b x)^{2} \mathrm{~d} x
$$

Optimal(type 4, 61 leaves, 5 steps):

$$
\frac{\mathrm{e}^{2 b^{2} x^{2}}}{2 b^{2} \pi}+\frac{\operatorname{erfi}(b x)^{2}}{4 b^{2}}+\frac{x^{2} \operatorname{erfi}(b x)^{2}}{2}-\frac{\mathrm{e}^{b^{2} x^{2}} x \operatorname{erfi}(b x)}{b \sqrt{\pi}}
$$

Result(type 8, 10 leaves):

$$
\int x \operatorname{erfi}(b x)^{2} \mathrm{~d} x
$$

Problem 63: Unable to integrate problem.

$$
\int \frac{\operatorname{erfi}(b x)^{2}}{x^{5}} \mathrm{~d} x
$$

Optimal(type 4, 104 leaves, 8 steps):

$$
-\frac{b^{2} \mathrm{e}^{2} b^{2} x^{2}}{3 \pi x^{2}}+\frac{4 b^{4} \operatorname{Ei}\left(2 b^{2} x^{2}\right)}{3 \pi}+\frac{b^{4} \operatorname{erfi}(b x)^{2}}{3}-\frac{\operatorname{erfi}(b x)^{2}}{4 x^{4}}-\frac{b \mathrm{e}^{b^{2} x^{2}} \operatorname{erfi}(b x)}{3 x^{3} \sqrt{\pi}}-\frac{2 b^{3} \mathrm{e}^{b^{2} x^{2}} \operatorname{erfi}(b x)}{3 x \sqrt{\pi}}
$$

Result(type 8, 12 leaves):

$$
\int \frac{\operatorname{erfi}(b x)^{2}}{x^{5}} \mathrm{~d} x
$$

Problem 66: Unable to integrate problem.

$$
\int(d x+c) \operatorname{erfi}(b x+a)^{2} \mathrm{~d} x
$$

Optimal(type 4, 166 leaves, 10 steps):

$$
\begin{aligned}
& \frac{d \mathrm{e}^{2(b x+a)^{2}}}{2 b^{2} \pi}+\frac{d \operatorname{erfi}(b x+a)^{2}}{4 b^{2}}+\frac{(-a d+b c)(b x+a) \operatorname{erfi}(b x+a)^{2}}{b^{2}}+\frac{d(b x+a)^{2} \operatorname{erfi}(b x+a)^{2}}{2 b^{2}}+\frac{(-a d+b c) \operatorname{erfi}((b x+a) \sqrt{2}) \sqrt{2}}{\sqrt{\pi} b^{2}} \\
& \quad-\frac{2(-a d+b c) \mathrm{e}^{(b x+a)^{2}} \operatorname{erfi}(b x+a)}{b^{2} \sqrt{\pi}}-\frac{d \mathrm{e}^{(b x+a)^{2}}(b x+a) \operatorname{erfi}(b x+a)}{b^{2} \sqrt{\pi}}
\end{aligned}
$$

Result(type 8, 16 leaves):

$$
\int(d x+c) \operatorname{erfi}(b x+a)^{2} \mathrm{~d} x
$$

Problem 67: Unable to integrate problem.

$$
\int \operatorname{erfi}(b x+a)^{2} \mathrm{~d} x
$$

Optimal(type 4, 60 leaves, 4 steps):

$$
\frac{(b x+a) \operatorname{erfi}(b x+a)^{2}}{b}+\frac{\operatorname{erfi}((b x+a) \sqrt{2}) \sqrt{2}}{\sqrt{\pi} b}-\frac{2 \mathrm{e}^{(b x+a)^{2}} \operatorname{erfi}(b x+a)}{b \sqrt{\pi}}
$$

Result(type 8, 10 leaves):

$$
\int \operatorname{erfi}(b x+a)^{2} \mathrm{~d} x
$$

Problem 68: Unable to integrate problem.

$$
\int x \operatorname{erfi}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right) \mathrm{d} x
$$

Optimal(type 4, 91 leaves, 5 steps):

$$
\frac{x^{2} \operatorname{erfi}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)}{2}-\frac{x^{2} \operatorname{erfi}\left(\frac{a b d^{2}+\frac{1}{n}+b^{2} d^{2} \ln \left(c x^{n}\right)}{b d}\right)}{2 \mathrm{e}^{\frac{2 a b d^{2} n+1}{b^{2} d^{2} n^{2}}}\left(c x^{n}\right)^{\frac{2}{n}}}
$$

Result(type 8, 17 leaves):

$$
\int x \operatorname{erfi}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right) \mathrm{d} x
$$

Problem 69: Unable to integrate problem.

$$
\int \frac{\operatorname{erfi}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)}{x^{2}} \mathrm{~d} x
$$

Optimal(type 4, 89 leaves, 5 steps):

$$
-\frac{\operatorname{erfi}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)}{x}+\frac{\mathrm{e}^{-\frac{1}{4 b^{2} d^{2} n^{2}}+\frac{a}{b n}}\left(c x^{n}\right)^{\frac{1}{n}} \operatorname{erfi}\left(\frac{2 a b d^{2}-\frac{1}{n}+2 b^{2} d^{2} \ln \left(c x^{n}\right)}{2 b d}\right)}{x}
$$

Result(type 8, 19 leaves):

$$
\int \frac{\operatorname{erfi}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)}{x^{2}} \mathrm{~d} x
$$

Problem 70: Unable to integrate problem.

$$
\int \mathrm{e}^{b^{2} x^{2}+c} \operatorname{erfi}(b x)^{n} \mathrm{~d} x
$$

Optimal(type 4, 23 leaves, 2 steps):

$$
\frac{\mathrm{e}^{c} \operatorname{erfi}(b x)^{1+n} \sqrt{\pi}}{2 b(1+n)}
$$

Result(type 8, 19 leaves):

$$
\int \mathrm{e}^{b^{2} x^{2}+c} \operatorname{erfi}(b x)^{n} \mathrm{~d} x
$$

Problem 71: Unable to integrate problem.

$$
\int \mathrm{e}^{d x^{2}+c} x^{5} \operatorname{erfi}(b x) \mathrm{d} x
$$

Optimal(type 4, 220 leaves, 9 steps):
$\frac{\mathrm{e}^{d x^{2}+c} \operatorname{erfi}(b x)}{d^{3}}-\frac{\mathrm{e}^{d x^{2}+c} x^{2} \operatorname{erfi}(b x)}{d^{2}}+\frac{\mathrm{e}^{d x^{2}+c} x^{4} \operatorname{erfi}(b x)}{2 d}-\frac{3 b \mathrm{e}^{c} \operatorname{erfi}\left(x \sqrt{b^{2}+d}\right)}{8 d\left(b^{2}+d\right)^{5 / 2}}-\frac{b \mathrm{e}^{c} \operatorname{erfi}\left(x \sqrt{b^{2}+d}\right)}{2 d^{2}\left(b^{2}+d\right)^{3 / 2}}-\frac{b \mathrm{e}^{c} \operatorname{erfi}\left(x \sqrt{b^{2}+d}\right)}{d^{3} \sqrt{b^{2}+d}}$

$$
+\frac{3 b \mathrm{e}^{c+\left(b^{2}+d\right) x^{2} x}}{4 d\left(b^{2}+d\right)^{2} \sqrt{\pi}}+\frac{b \mathrm{e}^{c+\left(b^{2}+d\right) x^{2}} x}{d^{2}\left(b^{2}+d\right) \sqrt{\pi}}-\frac{b \mathrm{e}^{c+\left(b^{2}+d\right) x^{2}} x^{3}}{2 d\left(b^{2}+d\right) \sqrt{\pi}}
$$

Result(type 8, 18 leaves):

$$
\int \mathrm{e}^{d x^{2}+c} x^{5} \operatorname{erfi}(b x) \mathrm{d} x
$$

[^0]$$
\int \frac{x^{2} \operatorname{erfi}(b x)}{e^{b^{2} x^{2}}} \mathrm{~d} x
$$

Optimal(type 5, 58 leaves, 3 steps):

$$
-\frac{x \operatorname{erfi}(b x)}{2 b^{2} \mathrm{e}^{b^{2} x^{2}}}+\frac{x^{2}}{2 b \sqrt{\pi}}+\frac{x^{2} \text { HypergeometricPFQ }\left([1,1],\left[\frac{3}{2}, 2\right],-b^{2} x^{2}\right)}{2 b \sqrt{\pi}}
$$

Result(type 8, 20 leaves):

$$
\int \frac{x^{2} \operatorname{erfi}(b x)}{\mathrm{e}^{b^{2} x^{2}}} \mathrm{~d} x
$$

Problem 75: Unable to integrate problem.

$$
\int \frac{\operatorname{erfi}(b x)}{\mathrm{e}^{b^{2} x^{2}} x^{4}} \mathrm{~d} x
$$

Optimal(type 5, 87 leaves, 5 steps):

$$
-\frac{\operatorname{erfi}(b x)}{3 \mathrm{e}^{b^{2} x^{2} x^{3}}}+\frac{2 b^{2} \operatorname{erfi}(b x)}{3 \mathrm{e}^{b^{2} x^{2} x}}-\frac{b}{3 x^{2} \sqrt{\pi}}+\frac{\left.4 b^{5} x^{2} \text { HypergeometricPFQ([1,1],[娄,2],- } b^{2} x^{2}\right)}{3 \sqrt{\pi}}-\frac{4 b^{3} \ln (x)}{3 \sqrt{\pi}}
$$

Result(type 8, 20 leaves):

$$
\int \frac{\operatorname{erfi}(b x)}{\mathrm{e}^{b^{2} x^{2}} x^{4}} \mathrm{~d} x
$$

Problem 76: Unable to integrate problem.

$$
\int \frac{\operatorname{erfi}(b x)}{\mathrm{e}^{b^{2} x^{2}} x^{6}} \mathrm{~d} x
$$

Optimal(type 5, 120 leaves, 7 steps):

$$
-\frac{\operatorname{erfi}(b x)}{5 \mathrm{e}^{b^{2} x^{2} x^{5}}}+\frac{2 b^{2} \operatorname{erfi}(b x)}{15 \mathrm{e}^{b^{2} x^{2} x^{3}}}-\frac{4 b^{4} \operatorname{erfi}(b x)}{15 \mathrm{e}^{b^{2} x^{2} x}}-\frac{b}{10 x^{4} \sqrt{\pi}}+\frac{2 b^{3}}{15 x^{2} \sqrt{\pi}}-\frac{8 b^{7} x^{2} \operatorname{HypergeometricPFQ}\left([1,1],\left[\frac{3}{2}, 2\right],-b^{2} x^{2}\right)}{15 \sqrt{\pi}}+\frac{8 b^{5} \ln (x)}{15 \sqrt{\pi}}
$$

Result(type 8, 20 leaves):

$$
\int \frac{\operatorname{erfi}(b x)}{\mathrm{e}^{b^{2} x^{2}} x^{6}} \mathrm{~d} x
$$

Problem 77: Unable to integrate problem.

$$
\int \mathrm{e}^{b^{2} x^{2}+c} x^{3} \operatorname{erfi}(b x) \mathrm{d} x
$$

Optimal(type 4, 79 leaves, 5 steps):

$$
-\frac{\mathrm{e}^{b^{2} x^{2}+c} \operatorname{erfi}(b x)}{2 b^{4}}+\frac{\mathrm{e}^{b^{2} x^{2}+c} x^{2} \operatorname{erfi}(b x)}{2 b^{2}}+\frac{5 \mathrm{e}^{c} \operatorname{erfi}(b x \sqrt{2}) \sqrt{2}}{16 b^{4}}-\frac{\mathrm{e}^{2 b^{2} x^{2}+c x}}{4 b^{3} \sqrt{\pi}}
$$

Result(type 8, 20 leaves):

$$
\int \mathrm{e}^{b^{2} x^{2}+c} x^{3} \operatorname{erfi}(b x) \mathrm{d} x
$$

Problem 78: Unable to integrate problem.

$$
\int \mathrm{e}^{b^{2} x^{2}+c} x^{4} \operatorname{erfi}(b x) \mathrm{d} x
$$

Optimal(type 4, 100 leaves, 7 steps):

$$
-\frac{3 \mathrm{e}^{b^{2} x^{2}+c} x \operatorname{erfi}(b x)}{4 b^{4}}+\frac{\mathrm{e}^{b^{2} x^{2}+c} x^{3} \operatorname{erfi}(b x)}{2 b^{2}}+\frac{\mathrm{e}^{2 b^{2} x^{2}+c}}{2 b^{5} \sqrt{\pi}}-\frac{\mathrm{e}^{2 b^{2} x^{2}+c} x^{2}}{4 b^{3} \sqrt{\pi}}+\frac{3 \mathrm{e}^{c} \operatorname{erfi}(b x)^{2} \sqrt{\pi}}{16 b^{5}}
$$

Result(type 8, 20 leaves):

$$
\int \mathrm{e}^{b^{2} x^{2}+c} x^{4} \operatorname{erfi}(b x) \mathrm{d} x
$$

Problem 79: Unable to integrate problem.

$$
\int \mathrm{e}^{d x^{2}+c} x \operatorname{erfi}(b x+a) \mathrm{d} x
$$

Optimal(type 4, 68 leaves, 3 steps):

$$
\frac{\mathrm{e}^{d x^{2}+c} \operatorname{erfi}(b x+a)}{2 d}-\frac{b \mathrm{e}^{c+\frac{a^{2} d}{b^{2}+d}} \operatorname{erfi}\left(\frac{a b+\left(b^{2}+d\right) x}{\sqrt{b^{2}+d}}\right)}{2 d \sqrt{b^{2}+d}}
$$

Result(type 8, 18 leaves):

$$
\int \mathrm{e}^{d x^{2}+c} x \operatorname{erfi}(b x+a) \mathrm{d} x
$$

Problem 82: Unable to integrate problem.

$$
\int-\operatorname{erfi}(b x) \sinh \left(b^{2} x^{2}-c\right) \mathrm{d} x
$$

Optimal(type 5, 45 leaves, 4 steps):

$$
\frac{b \mathrm{e}^{c} x^{2} \text { HypergeometricPFQ }\left([1,1],\left[\frac{3}{2}, 2\right],-b^{2} x^{2}\right)}{2 \sqrt{\pi}}-\frac{\operatorname{erfi}(b x)^{2} \sqrt{\pi}}{8 b \mathrm{e}^{c}}
$$

Result(type 8, 20 leaves):

$$
\int-\operatorname{erfi}(b x) \sinh \left(b^{2} x^{2}-c\right) \mathrm{d} x
$$

Test results for the 27 problems in "8.10 Formal derivatives.txt"

Problem 11: Result more than twice size of optimal antiderivative.

$$
\int \frac{-g(x) \text { Derivative }(1)(f)(x)-f(x) \text { Derivative }(1)(g)(x)}{1+f(x)^{2} g(x)^{2}} \mathrm{~d} x
$$

Optimal(type 9, 8 leaves, 2 steps):

$$
-\arctan (f(x) g(x))
$$

Result(type 9, 29 leaves):

$$
\int \frac{-g(x) \text { Derivative }(1)(f)(x)-f(x) \text { Derivative }(1)(g)(x)}{1+f(x)^{2} g(x)^{2}} \mathrm{~d} x
$$

Problem 23: Result more than twice size of optimal antiderivative.
$\int \cos ($ Derivative $(-1+m)(f)(x)$ Derivative $(-1+n)(g)(x))($ Derivative $(m)(f)(x)$ Derivative $(-1+n)(g)(x)+\operatorname{Derivative}(-1$
$+m)(f)(x)$ Derivative $(n)(g)(x)) \mathrm{d} x$
Optimal(type 9, 6 leaves, 2 steps):

$$
\sin (\text { Derivative }(-1+m)(f)(x) \text { Derivative }(-1+n)(g)(x))
$$

Result(type 9, 20 leaves):
$\int \cos ($ Derivative $(-1+m)(f)(x)$ Derivative $(-1+n)(g)(x))$ (Derivative $(m)(f)(x)$ Derivative $(-1+n)(g)(x)+\operatorname{Derivative}(-1$ $+m)(f)(x)$ Derivative $(n)(g)(x)) \mathrm{d} x$

Problem 24: Result more than twice size of optimal antiderivative.
$\int \cos \left(\right.$ Derivative $(-1+m)(f)(x)^{2}$ Derivative $\left.(-1+n)(g)(x)\right)$ Derivative $(-1+m)(f)(x)(2 \operatorname{Derivative}(m)(f)(x)$ Derivative $(-1+n)(g)(x)+\operatorname{Derivative~}($ $-1+m)(f)(x)$ Derivative $(n)(g)(x)) \mathrm{d} x$
Optimal(type 9, 8 leaves, 2 steps):

$$
\sin \left(\text { Derivative }(-1+m)(f)(x)^{2} \text { Derivative }(-1+n)(g)(x)\right)
$$

Result(type 9, 25 leaves):
$\int \cos \left(\right.$ Derivative $(-1+m)(f)(x)^{2}$ Derivative $\left.(-1+n)(g)(x)\right)$ Derivative $(-1+m)(f)(x)(2$ Derivative $(m)(f)(x)$ Derivative $(-1+n)(g)(x)+\operatorname{Derivative(~}$

$$
-1+m)(f)(x) \text { Derivative }(n)(g)(x)) \mathrm{d} x
$$

Problem 26: Result more than twice size of optimal antiderivative.
$\int \cos \left(\right.$ Derivative $(m)(f)(x)^{2}$ Derivative $\left.(n)(g)(x)^{3}\right)$ Derivative $(m)(f)(x)$ Derivative $(n)(g)(x)^{2}(2$ Derivative $(1+m)(f)(x)$ Derivative $(n)(g)(x)$
+3 Derivative $(m)(f)(x)$ Derivative $(1+n)(g)(x)) \mathrm{d} x$
Optimal(type 9, 10 leaves, 2 steps):

$$
\sin \left(\text { Derivative }(m)(f)(x)^{2} \text { Derivative }(n)(g)(x)^{3}\right)
$$

Result (type 9, 32 leaves):
$\int \cos \left(\right.$ Derivative $(m)(f)(x)^{2}$ Derivative $\left.(n)(g)(x)^{3}\right)$ Derivative $(m)(f)(x)$ Derivative $(n)(g)(x)^{2}(2$ Derivative $(1+m)(f)(x)$ Derivative $(n)(g)(x)$ +3 Derivative $(m)(f)(x)$ Derivative $(1+n)(g)(x)) \mathrm{d} x$

Test results for the 56 problems in "8.2 Fresnel integral functions.txt"
Problem 12: Unable to integrate problem.

$$
\int x^{3} \text { FresnelS }(b x)^{2} \mathrm{~d} x
$$

Optimal(type 4, 122 leaves, 10 steps):

$$
\frac{3 x^{2}}{8 b^{2} \pi^{2}}+\frac{x^{2} \cos \left(b^{2} \pi x^{2}\right)}{8 b^{2} \pi^{2}}+\frac{x^{3} \cos \left(\frac{b^{2} \pi x^{2}}{2}\right) \operatorname{FresnelS}(b x)}{2 b \pi}+\frac{3 \operatorname{FresnelS}(b x)^{2}}{4 b^{4} \pi^{2}}+\frac{x^{4} \operatorname{FresnelS}(b x)^{2}}{4}-\frac{3 x \operatorname{FresnelS}(b x) \sin \left(\frac{b^{2} \pi x^{2}}{2}\right)}{2 b^{3} \pi^{2}}-\frac{\sin \left(b^{2} \pi x^{2}\right)}{2 b^{4} \pi^{3}}
$$

Result(type 8, 12 leaves):

$$
\int x^{3} \text { FresnelS }(b x)^{2} \mathrm{~d} x
$$

Problem 16: Unable to integrate problem.

$$
\int \frac{\text { FresnelS }(b x)^{2}}{x^{9}} \mathrm{~d} x
$$

Optimal(type 4, 210 leaves, 20 steps):

$$
\begin{aligned}
& -\frac{b^{2}}{336 x^{6}}+\frac{b^{6} \pi^{2}}{1680 x^{2}}+\frac{b^{2} \cos \left(b^{2} \pi x^{2}\right)}{336 x^{6}}-\frac{b^{6} \pi^{2} \cos \left(b^{2} \pi x^{2}\right)}{336 x^{2}}-\frac{b^{3} \pi \cos \left(\frac{b^{2} \pi x^{2}}{2}\right) \operatorname{FresnelS}(b x)}{140 x^{5}}+\frac{b^{7} \pi^{3} \cos \left(\frac{b^{2} \pi x^{2}}{2}\right) \operatorname{FresnelS}(b x)}{420 x}+\frac{b^{8} \pi^{4} \operatorname{FresnelS}(b x)^{2}}{840} \\
& -\frac{\operatorname{FresnelS}(b x)^{2}}{8 x^{8}}-\frac{b^{8} \pi^{3} \operatorname{Si}\left(b^{2} \pi x^{2}\right)}{280}-\frac{b \operatorname{FresneIS}(b x) \sin \left(\frac{b^{2} \pi x^{2}}{2}\right)}{28 x^{7}}+\frac{b^{5} \pi^{2} \operatorname{FresnelS}(b x) \sin \left(\frac{b^{2} \pi x^{2}}{2}\right)}{420 x^{3}}-\frac{b^{4} \pi \sin \left(b^{2} \pi x^{2}\right)}{420 x^{4}}
\end{aligned}
$$

Result(type 8, 12 leaves):

Problem 17: Unable to integrate problem.

$$
\int(d x+c)^{2} \operatorname{FresnelS}(b x+a)^{2} \mathrm{~d} x
$$

Optimal(type 5, 451 leaves, 18 steps):
$\frac{2 d^{2} x}{3 b^{2} \pi^{2}}+\frac{d(-a d+b c) \cos \left(\pi(b x+a)^{2}\right)}{2 b^{3} \pi^{2}}+\frac{d^{2}(b x+a) \cos \left(\pi(b x+a)^{2}\right)}{6 b^{3} \pi^{2}}+\frac{2(-a d+b c)^{2} \cos \left(\frac{\pi(b x+a)^{2}}{2}\right) \operatorname{FresnelS}(b x+a)}{b^{3} \pi}$

$$
+\frac{2 d(-a d+b c)(b x+a) \cos \left(\frac{\pi(b x+a)^{2}}{2}\right) \operatorname{FresnelS}(b x+a)}{b^{3} \pi}+\frac{2 d^{2}(b x+a)^{2} \cos \left(\frac{\pi(b x+a)^{2}}{2}\right) \operatorname{FresnelS}(b x+a)}{3 b^{3} \pi}
$$

$$
-\frac{d(-a d+b c) \text { FresnelC }(b x+a) \operatorname{FresnelS}(b x+a)}{b^{3} \pi}+\frac{(-a d+b c)^{2}(b x+a) \operatorname{FresnelS}(b x+a)^{2}}{b^{3}}+\frac{d(-a d+b c)(b x+a)^{2} \operatorname{FresnelS}(b x+a)^{2}}{b^{3}}
$$

$$
+\frac{d^{2}(b x+a)^{3} \operatorname{FresnelS}(b x+a)^{2}}{3 b^{3}}+\frac{\mathrm{I} d(-a d+b c)(b x+a)^{2} \text { HypergeometricPFQ }\left([1,1],\left[\frac{3}{2}, 2\right],-\frac{\mathrm{I}}{2} \pi(b x+a)^{2}\right)}{4 b^{3} \pi}
$$

$$
-\frac{\mathrm{I} d(-a d+b c)(b x+a)^{2} \text { HypergeometricPFQ }\left([1,1],\left[\frac{3}{2}, 2\right], \frac{\mathrm{I}}{2} \pi(b x+a)^{2}\right)}{\left.-\frac{4 d^{2} \operatorname{FresnelS}(b x+a) \sin \left(\frac{\pi(b x+a)^{2}}{2}\right)}{2}\right) .}
$$

$$
-\longrightarrow 4 b^{3} \pi
$$

$$
3 b^{3} \pi^{2}
$$

$$
-\frac{5 d^{2} \text { FresnelC }((b x+a) \sqrt{2}) \sqrt{2}}{12 b^{3} \pi^{2}}-\frac{(-a d+b c)^{2} \operatorname{FresnelS}((b x+a) \sqrt{2}) \sqrt{2}}{2 b^{3} \pi}
$$

Result(type 8, 18 leaves):

$$
\int(d x+c)^{2} \text { FresnelS }(b x+a)^{2} \mathrm{~d} x
$$

Problem 18: Unable to integrate problem.

$$
\int \operatorname{FresnelS}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right) \mathrm{d} x
$$

Optimal(type 4, 186 leaves, 10 steps):

$$
\frac{\left(\frac{1}{4}-\frac{\mathrm{I}}{4}\right) x \operatorname{erf}\left(\frac{\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right)\left(\frac{1}{n}+\mathrm{I} a b d^{2} \pi+\mathrm{I} b^{2} d^{2} \pi \ln \left(c x^{n}\right)\right)}{b d \sqrt{\pi}}\right)}{\mathrm{e}^{\frac{2 a b n-\frac{\mathrm{I}}{\pi d^{2}}}{2 b^{2} n^{2}}}\left(c x^{n}\right)^{\frac{1}{n}}}+\frac{\left(\frac{1}{4}-\frac{\mathrm{I}}{4}\right) x \operatorname{erfi}\left(\frac{\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right)\left(\frac{1}{n}-\mathrm{I} a b d^{2} \pi-\mathrm{I} b^{2} d^{2} \pi \ln \left(c x^{n}\right)\right)}{b d \sqrt{\pi}}\right)}{\mathrm{e}^{\frac{2 a b n+\frac{\mathrm{I}}{\pi d^{2}}}{2 b^{2} n^{2}}}\left(c x^{n}\right)^{\frac{1}{n}}}
$$

$+x \operatorname{FresnelS}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)$
Result(type 8, 15 leaves):

$$
\int \operatorname{FresnelS}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right) \mathrm{d} x
$$

Problem 19: Unable to integrate problem.

$$
\int \frac{\operatorname{FresnelS}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)}{x^{3}} \mathrm{~d} x
$$

Optimal(type 4, 200 leaves, 10 steps):
$\left(\frac{1}{8}-\frac{\mathrm{I}}{8}\right) \mathrm{e}^{\frac{2 \mathrm{I}+2 a b d^{2} n \pi}{b^{2} d^{2} n^{2} \pi}}\left(c x^{n}\right)^{\frac{2}{n}} \operatorname{erf}\left(\frac{\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right)\left(\frac{2}{n}-\mathrm{I} a b d^{2} \pi-\mathrm{I} b^{2} d^{2} \pi \ln \left(c x^{n}\right)\right)}{b d \sqrt{\pi}}\right)$

$$
+\frac{\left(\frac{1}{8}-\frac{\mathrm{I}}{8}\right)\left(c x^{n}\right)^{\frac{2}{n}} \operatorname{erfi}\left(\frac{\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right)\left(\frac{2}{n}+\mathrm{I} a b d^{2} \pi+\mathrm{I} b^{2} d^{2} \pi \ln \left(c x^{n}\right)\right)}{b d \sqrt{\pi}}\right)}{\mathrm{e}^{\frac{2\left(\mathrm{I}-a b d^{2} n \pi\right)}{b^{2} d^{2} n^{2} \pi}} x^{2}}-\frac{\operatorname{FresnelS}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)}{2 x^{2}}
$$

Result(type 8, 19 leaves):

$$
\int \frac{\operatorname{FresnelS}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)}{x^{3}} \mathrm{~d} x
$$

Problem 20: Unable to integrate problem.

$$
\int \cos \left(c+\frac{b^{2} \pi x^{2}}{2}\right) \text { FresnelS }(b x) \mathrm{d} x
$$

Optimal(type 5, 81 leaves, 4 steps):
$\frac{\cos (c) \text { FresnelC }(b x) \text { FresnelS }(b x)}{2 b}-\frac{\mathrm{I} b x^{2} \cos (c) \text { HypergeometricPFQ }\left([1,1],\left[\frac{3}{2}, 2\right],-\frac{\mathrm{I}}{2} b^{2} \pi x^{2}\right)}{8}$

$$
+\frac{\mathrm{I} b x^{2} \cos (c) \text { HypergeometricPFQ }\left([1,1],\left[\frac{3}{2}, 2\right], \frac{\mathrm{I}}{2} b^{2} \pi x^{2}\right)}{8}-\frac{\operatorname{FresnelS}(b x)^{2} \sin (c)}{2 b}
$$

Result(type 8, 19 leaves):

$$
\int \cos \left(c+\frac{b^{2} \pi x^{2}}{2}\right) \operatorname{FresnelS}(b x) \mathrm{d} x
$$

Problem 26: Unable to integrate problem.

$$
\int x^{8} \cos \left(\frac{b^{2} \pi x^{2}}{2}\right) \operatorname{FresnelS}(b x) \mathrm{d} x
$$

Optimal(type 5, 271 leaves, 23 steps):
$\frac{35 x^{4}}{8 b^{5} \pi^{3}}-\frac{x^{8}}{16 b \pi}-\frac{40 \cos \left(b^{2} \pi x^{2}\right)}{b^{9} \pi^{5}}+\frac{5 x^{4} \cos \left(b^{2} \pi x^{2}\right)}{2 b^{5} \pi^{3}}-\frac{105 x \cos \left(\frac{b^{2} \pi x^{2}}{2}\right) \operatorname{FresnelS}(b x)}{b^{8} \pi^{4}}+\frac{7 x^{5} \cos \left(\frac{b^{2} \pi x^{2}}{2}\right) \operatorname{FresnelS}(b x)}{b^{4} \pi^{2}}$

$$
\begin{aligned}
& +\frac{105 \text { FresnelC }(b x) \text { FresnelS }(b x)}{2 b^{9} \pi^{4}}-\frac{105 \mathrm{I} x^{2} \text { HypergeometricPFQ }\left([1,1],\left[\frac{3}{2}, 2\right],-\frac{\mathrm{I}}{2} b^{2} \pi x^{2}\right)}{8 b^{7} \pi^{4}} \\
& +\frac{105 \mathrm{I} x^{2} \text { HypergeometricPFQ }\left([1,1],\left[\frac{3}{2}, 2\right], \frac{\mathrm{I}}{2} b^{2} \pi x^{2}\right)}{8 b^{7} \pi^{4}}-\frac{35 x^{3} \operatorname{FresnelS}(b x) \sin \left(\frac{b^{2} \pi x^{2}}{2}\right)}{b^{6} \pi^{3}}+\frac{x^{7} \operatorname{FresnelS}(b x) \sin \left(\frac{b^{2} \pi x^{2}}{2}\right)}{b^{2} \pi}-\frac{55 x^{2} \sin \left(b^{2} \pi x^{2}\right)}{4 b^{7} \pi^{4}} \\
& +\frac{x^{6} \sin \left(b^{2} \pi x^{2}\right)}{4 b^{3} \pi^{2}}
\end{aligned}
$$

Result(type 8, 20 leaves):

$$
\int x^{8} \cos \left(\frac{b^{2} \pi x^{2}}{2}\right) \operatorname{FresnelS}(b x) \mathrm{d} x
$$

Problem 29: Unable to integrate problem.

$$
\int \frac{\cos \left(\frac{b^{2} \pi x^{2}}{2}\right) \operatorname{FresnelS}(b x)}{x^{2}} \mathrm{~d} x
$$

Optimal(type 4, 42 leaves, 4 steps):

$$
-\frac{\cos \left(\frac{b^{2} \pi x^{2}}{2}\right) \operatorname{FresnelS}(b x)}{x}-\frac{b \pi \operatorname{FresnelS}(b x)^{2}}{2}+\frac{b \operatorname{Si}\left(b^{2} \pi x^{2}\right)}{4}
$$

Result(type 8, 20 leaves):

$$
\int \frac{\cos \left(\frac{b^{2} \pi x^{2}}{2}\right) \operatorname{FresnelS}(b x)}{x^{2}} \mathrm{~d} x
$$

Problem 41: Unable to integrate problem.

$$
\int x^{5} \text { FresnelC }(b x)^{2} \mathrm{~d} x
$$

Optimal(type 5, 227 leaves, 16 steps):

$$
\begin{aligned}
& \frac{5 x^{4}}{24 b^{2} \pi^{2}}+\frac{11 \cos \left(b^{2} \pi x^{2}\right)}{6 b^{6} \pi^{4}}-\frac{x^{4} \cos \left(b^{2} \pi x^{2}\right)}{12 b^{2} \pi^{2}}-\frac{5 x^{3} \cos \left(\frac{b^{2} \pi x^{2}}{2}\right) \operatorname{FresnelC}(b x)}{3 b^{3} \pi^{2}}+\frac{x^{6} \operatorname{FresnelC}(b x)^{2}}{6}-\frac{5 \operatorname{FresnelC}(b x) \operatorname{FresnelS}(b x)}{2 b^{6} \pi^{3}} \\
& -\frac{5 \mathrm{I} x^{2} \text { HypergeometricPFQ }\left([1,1],\left[\frac{3}{2}, 2\right],-\frac{\mathrm{I}}{2} b^{2} \pi x^{2}\right)}{8 b^{4} \pi^{3}}+\frac{5 \mathrm{I} x^{2} \operatorname{HypergeometricPFQ}\left([1,1],\left[\frac{3}{2}, 2\right], \frac{\mathrm{I}}{2} b^{2} \pi x^{2}\right)}{8 b^{4} \pi^{3}}+\frac{5 x \operatorname{FresnelC}(b x) \sin \left(\frac{b^{2} \pi x^{2}}{2}\right)}{b^{5} \pi^{3}} \\
& \\
& -\frac{x^{5} \operatorname{FresnelC}(b x) \sin \left(\frac{b^{2} \pi x^{2}}{2}\right)}{3 b \pi}+\frac{7 x^{2} \sin \left(b^{2} \pi x^{2}\right)}{12 b^{4} \pi^{3}}
\end{aligned}
$$

Result(type 8, 12 leaves):

$$
\int x^{5} \operatorname{FresnelC}(b x)^{2} \mathrm{~d} x
$$

Problem 44: Unable to integrate problem.

$$
\int \frac{\text { FresnelC }(b x)^{2}}{x^{5}} \mathrm{~d} x
$$

Optimal(type 4, 109 leaves, 9 steps):

Result(type 8, 12 leaves):

$$
\int \frac{\text { FresnelC }(b x)^{2}}{x^{5}} \mathrm{~d} x
$$

Problem 46: Unable to integrate problem.

$$
\int \frac{\text { FresnelC }(b x)^{2}}{x^{9}} \mathrm{~d} x
$$

Optimal(type 4, 210 leaves, 20 steps):
$-\frac{b^{2}}{336 x^{6}}+\frac{b^{6} \pi^{2}}{1680 x^{2}}-\frac{b^{2} \cos \left(b^{2} \pi x^{2}\right)}{336 x^{6}}+\frac{b^{6} \pi^{2} \cos \left(b^{2} \pi x^{2}\right)}{336 x^{2}}-\frac{b \cos \left(\frac{b^{2} \pi x^{2}}{2}\right) \operatorname{FresnelC}(b x)}{28 x^{7}}+\frac{b^{5} \pi^{2} \cos \left(\frac{b^{2} \pi x^{2}}{2}\right) \operatorname{FresnelC}(b x)}{420 x^{3}}+\frac{b^{8} \pi^{4} \operatorname{FresnelC}(b x)^{2}}{840}$
$-\frac{\operatorname{FresnelC}(b x)^{2}}{8 x^{8}}+\frac{b^{8} \pi^{3} \operatorname{Si}\left(b^{2} \pi x^{2}\right)}{280}+\frac{b^{3} \pi \operatorname{FresnelC}(b x) \sin \left(\frac{b^{2} \pi x^{2}}{2}\right)}{140 x^{5}}-\frac{b^{7} \pi^{3} \operatorname{FresnelC}(b x) \sin \left(\frac{b^{2} \pi x^{2}}{2}\right)}{420 x}+\frac{b^{4} \pi \sin \left(b^{2} \pi x^{2}\right)}{420 x^{4}}$
Result(type 8, 12 leaves):

$$
\int \frac{\text { FresnelC }(b x)^{2}}{x^{9}} \mathrm{~d} x
$$

Problem 47: Unable to integrate problem.

$$
\int \operatorname{FresnelC}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right) \mathrm{d} x
$$

Optimal(type 4, 186 leaves, 10 steps):
$\frac{\left(\frac{1}{4}+\frac{\mathrm{I}}{4}\right) x \operatorname{erf}\left(\frac{\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right)\left(\frac{1}{n}+\mathrm{I} a b d^{2} \pi+\mathrm{I} b^{2} d^{2} \pi \ln \left(c x^{n}\right)\right)}{b d \sqrt{\pi}}\right)}{\mathrm{e}^{\frac{2 a b n-\frac{\mathrm{I}}{\pi d^{2}}}{2 b^{2} n^{2}}}\left(c x^{n}\right)^{\frac{1}{n}}}-\frac{\left(\frac{1}{4}+\frac{\mathrm{I}}{4}\right) x \operatorname{erfi}\left(\frac{\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right)\left(\frac{1}{n}-\mathrm{I} a b d^{2} \pi-\mathrm{I} b^{2} d^{2} \pi \ln \left(c x^{n}\right)\right)}{b d \sqrt{\pi}}\right)}{\mathrm{e}^{\frac{2 a b n+\frac{\mathrm{I}}{\pi d^{2}}}{2 b^{2} n^{2}}\left(c x^{n}\right)^{\frac{1}{n}}}}$
$+x \operatorname{FresnelC}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)$
Result(type 8, 15 leaves):

$$
\int \operatorname{FresnelC}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right) \mathrm{d} x
$$

Problem 48: Unable to integrate problem.

$$
\int \frac{\operatorname{FresnelC}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)}{x^{2}} \mathrm{~d} x
$$

Optimal(type 4, 185 leaves, 10 steps):
$\frac{\left(\frac{1}{4}+\frac{\mathrm{I}}{4}\right) \mathrm{e}^{\frac{2 a b n+\frac{\mathrm{I}}{\pi d^{2}}}{2 b^{2} n^{2}}}\left(c x^{n}\right)^{\frac{1}{n}} \operatorname{erf}\left(\frac{\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right)\left(\frac{1}{n}-\mathrm{I} a b d^{2} \pi-\mathrm{I} b^{2} d^{2} \pi \ln \left(c x^{n}\right)\right)}{b d \sqrt{\pi}}\right)}{x}$

$$
-\frac{\left(\frac{1}{4}+\frac{\mathrm{I}}{4}\right) \mathrm{e}^{\frac{2 a b n-\frac{\mathrm{I}}{\pi d^{2}}}{2 b^{2} n^{2}}}\left(c x^{n}\right)^{\frac{1}{n}} \operatorname{erfi}\left(\frac{\left(\frac{1}{2}+\frac{\mathrm{I}}{2}\right)\left(\frac{1}{n}+\mathrm{I} a b d^{2} \pi+\mathrm{I} b^{2} d^{2} \pi \ln \left(c x^{n}\right)\right)}{b d \sqrt{\pi}}\right)}{x}-\frac{\operatorname{FresnelC}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)}{x}
$$

[^1]Problem 52: Unable to integrate problem.

$$
\int x^{8} \operatorname{FresnelC}(b x) \sin \left(\frac{b^{2} \pi x^{2}}{2}\right) \mathrm{d} x
$$

Optimal(type 5, 272 leaves, 23 steps):

$$
\begin{aligned}
& -\frac{35 x^{4}}{8 b^{5} \pi^{3}}+\frac{x^{8}}{16 b \pi}-\frac{40 \cos \left(b^{2} \pi x^{2}\right)}{b^{9} \pi^{5}}+\frac{5 x^{4} \cos \left(b^{2} \pi x^{2}\right)}{2 b^{5} \pi^{3}}+\frac{35 x^{3} \cos \left(\frac{b^{2} \pi x^{2}}{2}\right) \operatorname{FresnelC}(b x)}{b^{6} \pi^{3}}-\frac{x^{7} \cos \left(\frac{b^{2} \pi x^{2}}{2}\right) \text { FresnelC }(b x)}{b^{2} \pi} \\
& \quad+\frac{105 \text { FresnelC }(b x) \text { FresnelS }(b x)}{2 b^{9} \pi^{4}}+\frac{105 \mathrm{I} x^{2} \text { HypergeometricPFQ }\left([1,1],\left[\frac{3}{2}, 2\right],-\frac{\mathrm{I}}{2} b^{2} \pi x^{2}\right)}{8 b^{7} \pi^{4}} \\
& \quad-\frac{105 \mathrm{I} x^{2} \text { HypergeometricPFQ }\left([1,1],\left[\frac{3}{2}, 2\right], \frac{\mathrm{I}}{2} b^{2} \pi x^{2}\right)}{8 b^{7} \pi^{4}}-\frac{105 x \operatorname{FresnelC}(b x) \sin \left(\frac{b^{2} \pi x^{2}}{2}\right)}{b^{8} \pi^{4}}+\frac{7 x^{5} \operatorname{FresnelC}(b x) \sin \left(\frac{b^{2} \pi x^{2}}{2}\right)}{b^{4} \pi^{2}} \\
& \quad-\frac{55 x^{2} \sin \left(b^{2} \pi x^{2}\right)}{4 b^{7} \pi^{4}}+\frac{x^{6} \sin \left(b^{2} \pi x^{2}\right)}{4 b^{3} \pi^{2}}
\end{aligned}
$$

Result(type 8, 20 leaves):

$$
\int x^{8} \operatorname{FresnelC}(b x) \sin \left(\frac{b^{2} \pi x^{2}}{2}\right) \mathrm{d} x
$$

Problem 55: Unable to integrate problem.

$$
\int \operatorname{FresnelC}(b x) \sin \left(\frac{b^{2} \pi x^{2}}{2}\right) \mathrm{d} x
$$

Optimal(type 5, 62 leaves, 1 step):

$$
\frac{\operatorname{FresnelC}(b x) \text { FresnelS }(b x)}{2 b}+\frac{\mathrm{I} b x^{2} \text { HypergeometricPFQ }\left([1,1],\left[\frac{3}{2}, 2\right],-\frac{\mathrm{I}}{2} b^{2} \pi x^{2}\right)}{8}-\frac{\mathrm{I} b x^{2} \text { HypergeometricPFQ }\left([1,1],\left[\frac{3}{2}, 2\right], \frac{\mathrm{I}}{2} b^{2} \pi x^{2}\right)}{8}
$$

Result(type 8, 17 leaves):

$$
\int \operatorname{FresnelC}(b x) \sin \left(\frac{b^{2} \pi x^{2}}{2}\right) \mathrm{d} x
$$

Test results for the 55 problems in " 8.3 Exponential integral functions.txt"
Problem 1: Result more than twice size of optimal antiderivative.

$$
\int x^{2} \mathrm{Ei}_{1}(b x) \mathrm{d} x
$$

Optimal(type 4, 21 leaves, 1 step):

$$
-\frac{x^{3} \mathrm{Ei}_{-2}(b x)}{3}+\frac{x^{3} \mathrm{Ei}_{1}(b x)}{3}
$$

Result(type 4, 47 leaves):

$$
\frac{\frac{b^{3} x^{3} \mathrm{Ei}_{1}(b x)}{3}-\frac{b^{2} x^{2} \mathrm{e}^{-b x}}{3}-\frac{2 b x \mathrm{e}^{-b x}}{3}-\frac{2 \mathrm{e}^{-b x}}{3}}{b^{3}}
$$

Problem 3: Result more than twice size of optimal antiderivative.

$$
\int \frac{\mathrm{Ei}_{1}(b x)}{x^{4}} \mathrm{~d} x
$$

Optimal(type 4, 21 leaves, 1 step):

$$
-\frac{\mathrm{Ei}_{1}(b x)}{3 x^{3}}+\frac{\mathrm{Ei}_{4}(b x)}{3 x^{3}}
$$

Result(type 4, 64 leaves):

$$
b^{3}\left(-\frac{\mathrm{Ei}_{1}(b x)}{3 b^{3} x^{3}}+\frac{\mathrm{e}^{-b x}}{9 b^{3} x^{3}}-\frac{\mathrm{e}^{-b x}}{18 b^{2} x^{2}}+\frac{\mathrm{e}^{-b x}}{18 b x}-\frac{\mathrm{Ei}_{1}(b x)}{18}\right)
$$

Problem 4: Result more than twice size of optimal antiderivative.

$$
\int \mathrm{Ei}_{2}(b x) \mathrm{d} x
$$

Optimal(type 4, 10 leaves, 1 step):

$$
-\frac{\mathrm{Ei}_{3}(b x)}{b}
$$

Result(type 4, 67 leaves):

$$
\frac{\frac{\left(\gamma-\frac{3}{2}+\ln (x)+\ln (b)\right) x^{2} b^{2}}{2}+\frac{3 b^{2} x^{2}}{4}+\frac{1}{2}-\frac{(-3 b x+3) \mathrm{e}^{-b x}}{6}+\frac{b^{2} x^{2}\left(-\gamma-\ln (b x)-\mathrm{Ei}_{1}(b x)\right)}{2}}{b}
$$

Problem 5: Result more than twice size of optimal antiderivative.

$$
\int \frac{\mathrm{Ei}_{2}(b x)}{x^{5}} \mathrm{~d} x
$$

Optimal(type 4, 21 leaves, 1 step):

$$
-\frac{\mathrm{Ei}_{2}(b x)}{3 x^{4}}+\frac{\mathrm{Ei}_{5}(b x)}{3 x^{4}}
$$

Result(type 4, 164 leaves):
$b^{4}\left(-\frac{1}{4 b^{4} x^{4}}-\frac{-\frac{2}{3}+\gamma+\ln (x)+\ln (b)}{3 x^{3} b^{3}}+\frac{1}{4 b^{2} x^{2}}-\frac{1}{12 b x}+\frac{29}{864}-\frac{\gamma}{72}-\frac{\ln (x)}{72}-\frac{\ln (b)}{72}+\frac{-145 b^{4} x^{4}+360 b^{3} x^{3}-1080 b^{2} x^{2}-960 b x+1080}{4320 b^{4} x^{4}}\right.$

$$
\left.-\frac{\left(20 b^{3} x^{3}-20 b^{2} x^{2}+40 b x+360\right) \mathrm{e}^{-b x}}{1440 b^{4} x^{4}}-\frac{\left(20 b^{3} x^{3}+480\right)\left(-\gamma-\ln (b x)-\mathrm{Ei}_{1}(b x)\right)}{1440 b^{3} x^{3}}\right)
$$

Problem 6: Result more than twice size of optimal antiderivative.

$$
\int x^{2} \mathrm{Ei}_{3}(b x) \mathrm{d} x
$$

Optimal(type 4, 21 leaves, 1 step):

$$
-\frac{x^{3} \mathrm{Ei}_{-2}(b x)}{5}+\frac{x^{3} \mathrm{Ei}_{3}(b x)}{5}
$$

Result(type 4, 91 leaves):

$$
\frac{-\frac{\left(-\frac{17}{10}+\gamma+\ln (x)+\ln (b)\right) x^{5} b^{5}}{10}-\frac{17 b^{5} x^{5}}{100}+\frac{2}{5}-\frac{\left(18 b^{4} x^{4}-18 b^{3} x^{3}+36 b^{2} x^{2}+72 b x+72\right) \mathrm{e}^{-b x}}{180}-\frac{b^{5} x^{5}\left(-\gamma-\ln (b x)-\mathrm{Ei}_{1}(b x)\right)}{10}}{h^{3}}
$$

Problem 7: Result more than twice size of optimal antiderivative.

$$
\int x \mathrm{Ei}_{3}(b x) \mathrm{d} x
$$

Optimal(type 4, 21 leaves, 1 step):

$$
-\frac{x^{2} \mathrm{Ei}_{-1}(b x)}{4}+\frac{x^{2} \mathrm{Ei}_{3}(b x)}{4}
$$

Result(type 4, 83 leaves):

$$
\frac{-\frac{\left(-\frac{7}{4}+\gamma+\ln (x)+\ln (b)\right) x^{4} b^{4}}{8}-\frac{7 b^{4} x^{4}}{32}+\frac{1}{4}-\frac{\left(15 b^{3} x^{3}-15 b^{2} x^{2}+30 b x+30\right) \mathrm{e}^{-b x}}{120}-\frac{b^{4} x^{4}\left(-\gamma-\ln (b x)-\mathrm{Ei}_{1}(b x)\right)}{8}}{h^{2}}
$$

Problem 8: Result more than twice size of optimal antiderivative.
$\int \mathrm{Ei}_{3}(b x) \mathrm{d} x$

Optimal(type 4, 10 leaves, 1 step):

$$
-\frac{\mathrm{Ei}_{4}(b x)}{b}
$$

Result(type 4, 75 leaves):

$$
-\frac{\left(\gamma-\frac{11}{6}+\ln (x)+\ln (b)\right) x^{3} b^{3}}{6}-\frac{11 b^{3} x^{3}}{36}+\frac{1}{3}-\frac{\left(4 b^{2} x^{2}-4 b x+8\right) \mathrm{e}^{-b x}}{24}-\frac{b^{3} x^{3}\left(-\gamma-\ln (b x)-\mathrm{Ei}_{1}(b x)\right)}{6}
$$

$$
b
$$

Problem 9: Result more than twice size of optimal antiderivative.

$$
\int \frac{\mathrm{Ei}_{3}(b x)}{x} \mathrm{~d} x
$$

Optimal(type 4, 15 leaves, 1 step):

$$
-\frac{\mathrm{Ei}_{1}(b x)}{2}+\frac{\mathrm{Ei}_{3}(b x)}{2}
$$

Result(type 4, 77 leaves):

$$
\frac{\gamma}{2}+\frac{\ln (x)}{2}+\frac{\ln (b)}{2}-\frac{(-2+\gamma+\ln (x)+\ln (b)) x^{2} b^{2}}{4}-\frac{b^{2} x^{2}}{2}+\frac{(-9 b x+9) \mathrm{e}^{-b x}}{36}+\frac{\left(-9 b^{2} x^{2}+18\right)\left(-\gamma-\ln (b x)-\mathrm{Ei}_{1}(b x)\right)}{36}
$$

Problem 10: Result more than twice size of optimal antiderivative.

$$
\int \frac{\mathrm{Ei}_{3}(b x)}{x^{5}} \mathrm{~d} x
$$

Optimal(type 4, 21 leaves, 1 step):

$$
-\frac{\mathrm{Ei}_{3}(b x)}{2 x^{4}}+\frac{\mathrm{Ei}_{5}(b x)}{2 x^{4}}
$$

Result(type 4, 164 leaves):
$b^{4}\left(-\frac{1}{8 b^{4} x^{4}}+\frac{1}{3 x^{3} b^{3}}+\frac{-1+\gamma+\ln (x)+\ln (b)}{4 x^{2} b^{2}}-\frac{1}{6 b x}+\frac{31}{576}-\frac{\gamma}{48}-\frac{\ln (x)}{48}-\frac{\ln (b)}{48}+\frac{-155 b^{4} x^{4}+480 b^{3} x^{3}+720 b^{2} x^{2}-960 b x+360}{2880 b^{4} x^{4}}\right.$

$$
\left.-\frac{\left(15 b^{3} x^{3}-15 b^{2} x^{2}-150 b x+90\right) \mathrm{e}^{-b x}}{720 b^{4} x^{4}}+\frac{\left(-15 b^{2} x^{2}+180\right)\left(-\gamma-\ln (b x)-\mathrm{Ei}_{1}(b x)\right)}{720 b^{2} x^{2}}\right)
$$

Problem 11: Result more than twice size of optimal antiderivative.

$$
\int \frac{\mathrm{Ei}_{-1}(b x)}{x} \mathrm{~d} x
$$

Optimal(type 4, 15 leaves, 1 step):

$$
-\frac{E i_{-1}(b x)}{2}+\frac{E i_{1}(b x)}{2}
$$

Result(type 4, 68 leaves):

$$
-\frac{1}{2 b^{2} x^{2}}+\frac{1}{4}-\frac{\ln (x)}{2}-\frac{\ln (b)}{2}+\frac{-3 b^{2} x^{2}+6}{12 b^{2} x^{2}}-\frac{(3 b x+3) \mathrm{e}^{-b x}}{6 b^{2} x^{2}}+\frac{\ln (b x)}{2}+\frac{\mathrm{Ei}_{1}(b x)}{2}
$$

Problem 13: Result more than twice size of optimal antiderivative.

$$
\int \frac{E i_{-2}(b x)}{x^{3}} \mathrm{~d} x
$$

Optimal(type 4, 21 leaves, 1 step):

$$
-\frac{\mathrm{Ei}_{-2}(b x)}{5 x^{2}}+\frac{\mathrm{Ei}_{3}(b x)}{5 x^{2}}
$$

Result(type 4, 128 leaves):

$$
\begin{aligned}
& b^{2}\left(-\frac{2}{5 x^{5} b^{5}}+\frac{1}{6 b^{2} x^{2}}-\frac{1}{4 b x}+\frac{17}{100}-\frac{\ln (x)}{10}-\frac{\ln (b)}{10}+\frac{-153 b^{5} x^{5}+225 b^{4} x^{4}-150 b^{3} x^{3}+360}{900 b^{5} x^{5}}-\frac{\left(18 b^{4} x^{4}-18 b^{3} x^{3}+36 b^{2} x^{2}+72 b x+72\right) \mathrm{e}^{-b x}}{180 b^{5} x^{5}}\right. \\
& \left.\quad+\frac{\ln (b x)}{10}+\frac{E i_{1}(b x)}{10}\right)
\end{aligned}
$$

Problem 15: Result more than twice size of optimal antiderivative.

$$
\int \mathrm{Ei}_{-1}(b x) \mathrm{d} x
$$

Optimal(type 3, 14 leaves, 1 step):

$$
-\frac{1}{b^{2} \mathrm{e}^{b x} x}
$$

Result(type 3, 41 leaves):

$$
\frac{-\frac{1}{b x}+1+\frac{-2 b x+2}{2 b x}-\frac{\mathrm{e}^{-b x}}{b x}}{b}
$$

Problem 16: Result more than twice size of optimal antiderivative.

$$
\int \frac{\mathrm{Ei}_{-3}(b x)}{x^{2}} \mathrm{~d} x
$$

Optimal(type 4, 21 leaves, 1 step):

$$
-\frac{\mathrm{Ei}_{-3}(b x)}{5 x}+\frac{\mathrm{Ei}_{2}(b x)}{5 x}
$$

Result(type 4, 110 leaves):
$b\left(-\frac{6}{5 x^{5} b^{5}}+\frac{1}{4 b x}-\frac{6}{25}+\frac{\ln (x)}{5}+\frac{\ln (b)}{5}+\frac{72 b^{5} x^{5}-75 b^{4} x^{4}+360}{300 b^{5} x^{5}}-\frac{\left(-12 b^{4} x^{4}+12 b^{3} x^{3}+36 b^{2} x^{2}+72 b x+72\right) \mathrm{e}^{-b x}}{60 b^{5} x^{5}}-\frac{\ln (b x)}{5}-\frac{\mathrm{Ei}_{1}(b x)}{5}\right)$

Problem 20: Result unnecessarily involves higher level functions.

$$
\int(d x)^{m} \operatorname{Ei}_{n}(b x) \mathrm{d} x
$$

Optimal(type 4, 46 leaves, 1 step):

$$
-\frac{(d x)^{1+m} \mathrm{Ei}_{-m}(b x)}{d(m+n)}+\frac{(d x)^{1+m} \mathrm{Ei}_{n}(b x)}{d(m+n)}
$$

Result(type 5, 88 leaves):

$$
(d x)^{m} x^{-m} b^{-1-m}\left(\frac{x^{1+m} b^{1+m} \text { hypergeom }([1+m, 1-n],[2+m, 2-n],-b x)}{(-1+n)(1+m)}+\frac{\pi x^{m+n} b^{m+n} \csc (\pi n)}{(m+n) \Gamma(n)}\right)
$$

Problem 23: Result unnecessarily involves higher level functions and more than twice size of optimal antiderivative.

$$
\int x \mathrm{Ei}_{n}(b x) \mathrm{d} x
$$

Optimal(type 4, 30 leaves, 1 step):

$$
-\frac{x^{2} \mathrm{Ei}_{-1}(b x)}{1+n}+\frac{x^{2} \mathrm{Ei}_{n}(b x)}{1+n}
$$

Result(type 5, 62 leaves):

Problem 26: Unable to integrate problem.

$$
\int(d x+c)^{3} \mathrm{Ei}_{3}(b x+a) \mathrm{d} x
$$

Optimal(type 4, 75 leaves, 4 steps):

$$
-\frac{(d x+c)^{3} \mathrm{Ei}_{4}(b x+a)}{b}-\frac{3 d(d x+c)^{2} \mathrm{Ei}_{5}(b x+a)}{b^{2}}-\frac{6 d^{2}(d x+c) \mathrm{Ei}_{6}(b x+a)}{b^{3}}-\frac{6 d^{3} \mathrm{Ei}_{7}(b x+a)}{b^{4}}
$$

Result(type 8, 17 leaves):

$$
\int(d x+c)^{3} \mathrm{Ei}_{3}(b x+a) \mathrm{d} x
$$

Problem 27: Unable to integrate problem.

$$
\int(d x+c)^{2} \mathrm{Ei}_{3}(b x+a) \mathrm{d} x
$$

Optimal(type 4, 53 leaves, 3 steps):

$$
-\frac{(d x+c)^{2} \mathrm{Ei}_{4}(b x+a)}{b}-\frac{2 d(d x+c) \mathrm{Ei}_{5}(b x+a)}{b^{2}}-\frac{2 d^{2} \mathrm{Ei}_{6}(b x+a)}{b^{3}}
$$

Result(type 8, 17 leaves):

$$
\int(d x+c)^{2} \mathrm{Ei}_{3}(b x+a) \mathrm{d} x
$$

Problem 28: Unable to integrate problem.

$$
\int(d x+c)^{3} \mathrm{Ei}_{-1}(b x+a) \mathrm{d} x
$$

Optimal(type 4, 118 leaves, 7 steps):

$$
-\frac{3 d^{3} \mathrm{e}^{-b x-a}}{b^{4}}-\frac{3 d^{2}(-a d+b c) \mathrm{e}^{-b x-a}}{b^{4}}-\frac{3 d^{2} \mathrm{e}^{-b x-a}(d x+c)}{b^{3}}-\frac{\mathrm{e}^{-b x-a}(d x+c)^{3}}{b(b x+a)}+\frac{3 d(-a d+b c)^{2} \operatorname{Ei}(-b x-a)}{b^{4}}
$$

Result(type 8, 17 leaves):

$$
\int(d x+c)^{3} \mathrm{Ei}_{-1}(b x+a) \mathrm{d} x
$$

Problem 29: Unable to integrate problem.

$$
\int(d x+c)^{2} \mathrm{Ei}_{-1}(b x+a) \mathrm{d} x
$$

Optimal(type 4, 69 leaves, 5 steps):

$$
-\frac{2 d^{2} \mathrm{e}^{-b x-a}}{b^{3}}-\frac{\mathrm{e}^{-b x-a}(d x+c)^{2}}{b(b x+a)}+\frac{2 d(-a d+b c) \operatorname{Ei}(-b x-a)}{b^{3}}
$$

Result(type 8, 17 leaves):

$$
\int(d x+c)^{2} \mathrm{Ei}_{-1}(b x+a) \mathrm{d} x
$$

Problem 30: Unable to integrate problem.

$$
\int(d x+c) \mathrm{Ei}_{-1}(b x+a) \mathrm{d} x
$$

Optimal(type 4, 41 leaves, 2 steps):

$$
-\frac{\mathrm{e}^{-b x-a}(d x+c)}{b(b x+a)}+\frac{d \operatorname{Ei}(-b x-a)}{b^{2}}
$$

Result(type 8, 15 leaves):

$$
\int(d x+c) \mathrm{Ei}_{-1}(b x+a) \mathrm{d} x
$$

Problem 31: Unable to integrate problem.

$$
\int \frac{\mathrm{Ei}_{-2}(b x+a)}{(d x+c)^{2}} \mathrm{~d} x
$$

Optimal(type 4, 411 leaves, 15 steps):

$$
\begin{aligned}
& \frac{2 d^{2} \mathrm{e}^{-b x-a}}{b^{2}(-a d+b c)(d x+c)^{3}}+\frac{2 d \mathrm{e}^{-b x-a}}{b^{2}(b x+a)(d x+c)^{3}}+\frac{3 d^{2} \mathrm{e}^{-b x-a}}{b(-a d+b c)^{2}(d x+c)^{2}}-\frac{d \mathrm{e}^{-b x-a}}{b(-a d+b c)(d x+c)^{2}}+\frac{6 d^{2} \mathrm{e}^{-b x-a}}{(-a d+b c)^{3}(d x+c)} \\
& -\frac{3 d \mathrm{e}^{-b x-a}}{(-a d+b c)^{2}(d x+c)}+\frac{\mathrm{e}^{-b x-a}}{(-a d+b c)(d x+c)}+\frac{6 b d^{2} \operatorname{Ei}(-b x-a)}{(-a d+b c)^{4}}-\frac{6 b d^{2} \mathrm{e}^{-a+\frac{b c}{d}} \operatorname{Ei}\left(-\frac{b(d x+c)}{d}\right)}{(-a d+b c)^{4}}+\frac{6 b d \mathrm{e}}{-a+\frac{b c}{d}} \operatorname{Ei(-\frac {b(dx+c)}{d})} \\
& -\frac{3 b \mathrm{e}^{-a+\frac{b c}{d}} \operatorname{Ei}\left(-\frac{b(d x+c)}{d}\right)}{(-a d+b c)^{2}}+\frac{b \mathrm{e}^{-a+\frac{b c}{d}} \operatorname{Ei}\left(-\frac{b(d x+c)}{d}\right)}{d(-a d+b c)}-\frac{\operatorname{Ei}_{-1}(b x+a)}{b(d x+c)^{2}}
\end{aligned}
$$

Result(type 8, 17 leaves):

$$
\int \frac{\mathrm{Ei}_{-2}(b x+a)}{(d x+c)^{2}} \mathrm{~d} x
$$

Problem 32: Unable to integrate problem.

$$
\int(d x+c)^{2} \mathrm{Ei}_{-3}(b x+a) \mathrm{d} x
$$

Optimal(type 4, 62 leaves, 3 steps):

$$
-\frac{2 d^{2} \mathrm{e}^{-b x-a}}{b^{3}(b x+a)}-\frac{(d x+c)^{2} \mathrm{Ei}_{-2}(b x+a)}{b}-\frac{2 d(d x+c) \mathrm{Ei}_{-1}(b x+a)}{b^{2}}
$$

Result(type 8, 17 leaves):

$$
\int(d x+c)^{2} \operatorname{Ei}_{-3}(b x+a) \mathrm{d} x
$$

Problem 33: Unable to integrate problem.

$$
\int(d x+c) \mathrm{Ei}_{-3}(b x+a) \mathrm{d} x
$$

Optimal(type 4, 31 leaves, 2 steps):

$$
-\frac{(d x+c) \mathrm{Ei}_{-2}(b x+a)}{b}-\frac{d \mathrm{Ei}_{-1}(b x+a)}{b^{2}}
$$

Result(type 8, 15 leaves):

$$
\int(d x+c) \mathrm{Ei}_{-3}(b x+a) \mathrm{d} x
$$

Problem 34: Unable to integrate problem.

$$
\int \mathrm{Ei}_{-3}(b x+a) \mathrm{d} x
$$

Optimal (type 4, 12 leaves, 1 step):

$$
-\frac{E i_{-2}(b x+a)}{b}
$$

Result(type 8, 9 leaves):

$$
\int \mathrm{Ei}_{-3}(b x+a) \mathrm{d} x
$$

Problem 35: Unable to integrate problem.

$$
\int \frac{\mathrm{Ei}_{-3}(b x+a)}{d x+c} \mathrm{~d} x
$$

Optimal(type 4, 442 leaves, 16 steps):

$$
\begin{aligned}
& -\frac{2 d^{3} \mathrm{e}^{-b x-a}}{b^{3}(-a d+b c)(d x+c)^{3}}-\frac{2 d^{2} \mathrm{e}^{-b x-a}}{b^{3}(b x+a)(d x+c)^{3}}-\frac{3 d^{3} \mathrm{e}^{-b x-a}}{b^{2}(-a d+b c)^{2}(d x+c)^{2}}+\frac{d^{2} \mathrm{e}^{-b x-a}}{b^{2}(-a d+b c)(d x+c)^{2}}-\frac{6 d^{3} \mathrm{e}^{-b x-a}}{b(-a d+b c)^{3}(d x+c)} \\
& +\frac{3 d^{2} \mathrm{e}^{-b x-a}}{b(-a d+b c)^{2}(d x+c)}-\frac{d \mathrm{e}^{-b x-a}}{b(-a d+b c)(d x+c)}-\frac{6 d^{3} \operatorname{Ei}(-b x-a)}{(-a d+b c)^{4}}+\frac{6 d^{3} \mathrm{e}^{-a+\frac{b c}{d}} \operatorname{Ei}\left(-\frac{b(d x+c)}{d}\right)}{(-a d+b c)^{4}}-\frac{6 d^{2} \mathrm{e}^{-a+\frac{b c}{d}} \mathrm{Ei}\left(-\frac{b(d x+c)}{d}\right)}{(-a d+b c)^{3}} \\
& +\frac{3 d \mathrm{e}^{-a+\frac{b c}{d}} \operatorname{Ei}\left(-\frac{b(d x+c)}{d}\right)}{(-a d+b c)^{2}}-\frac{\mathrm{e}^{-a+\frac{b c}{d}} \operatorname{Ei}\left(-\frac{b(d x+c)}{d}\right)}{-a d+b c}-\frac{\mathrm{Ei}_{-2}(b x+a)}{b(d x+c)}+\frac{d \mathrm{Ei}_{-1}(b x+a)}{b^{2}(d x+c)^{2}}
\end{aligned}
$$

Result (type 8, 17 leaves):

$$
\int \frac{\mathrm{Ei}_{-3}(b x+a)}{d x+c} \mathrm{~d} x
$$

Problem 39: Unable to integrate problem.

$$
\int(d x+c) \mathrm{Ei}_{n}(b x+a) \mathrm{d} x
$$

Optimal(type 4, 35 leaves, 2 steps):

$$
-\frac{(d x+c) \mathrm{Ei}_{1+n}(b x+a)}{b}-\frac{d \mathrm{Ei}_{2+n}(b x+a)}{b^{2}}
$$

Result (type 8, 15 leaves):

$$
\int(d x+c) \mathrm{Ei}_{n}(b x+a) \mathrm{d} x
$$

Problem 50: Result more than twice size of optimal antiderivative.

$$
\int \mathrm{e}^{b x+a} x^{2} \operatorname{Ei}(d x+c) \mathrm{d} x
$$

Optimal(type 4, 228 leaves, 14 steps):

$$
\begin{aligned}
& \frac{\mathrm{e}^{a+c+(b+d) x}}{b(b+d)^{2}}+\frac{2 \mathrm{e}^{a+c+(b+d) x}}{b^{2}(b+d)}+\frac{c \mathrm{e}^{a+c+(b+d) x}}{b d(b+d)}-\frac{\mathrm{e}^{a+c+(b+d) x} x}{b(b+d)}+\frac{2 \mathrm{e}^{b x+a} \operatorname{Ei}(d x+c)}{b^{3}}-\frac{2 \mathrm{e}^{b x+a} x \operatorname{Ei}(d x+c)}{b^{2}}+\frac{\mathrm{e}^{b x+a} x^{2} \operatorname{Ei}(d x+c)}{b} \\
& -\frac{2 \mathrm{e}^{a-\frac{b c}{d}} \operatorname{Ei}\left(\frac{(b+d)(d x+c)}{d}\right)}{b^{3}}-\frac{c^{2} \mathrm{e}^{a-\frac{b c}{d}} \operatorname{Ei}\left(\frac{(b+d)(d x+c)}{d}\right)}{b d^{2}}-\frac{2 c \mathrm{e}^{a-\frac{b c}{d}} \operatorname{Ei}\left(\frac{(b+d)(d x+c)}{d}\right)}{b^{2} d}
\end{aligned}
$$

Result(type 4, 693 leaves):
$\frac{1}{d}\left(\frac{1}{d b}(\operatorname{Ei}(d x\right.$

$$
\begin{aligned}
& +c)\left(\frac{d^{2}\left(\left(\frac{b(d x+c)}{d}+\frac{a d-b c}{d}\right)^{2} \mathrm{e}^{\frac{b(d x+c)}{d}+\frac{a d-b c}{d}}-2\left(\frac{b(d x+c)}{d}+\frac{a d-b c}{d}\right) \mathrm{e}^{\frac{b(d x+c)}{d}+\frac{a d-b c}{d}}+\mathrm{e}^{2}\right.}{d}\right. \\
& \left.\left.+\frac{\mathrm{e}^{\frac{b(d x+c)}{d}+\frac{a d-b c}{d}} d^{2} a^{2}}{b^{2}}-\frac{2 d^{2} a\left(\left(\frac{b(d x+c)}{d}+\frac{a d-b c}{d}\right) \mathrm{e}^{\left.\frac{b(d x+c)}{d}+\frac{a d-b c}{d}-\mathrm{e}^{\frac{b(d x+c)}{d}+\frac{a d-b c}{d}}\right)}\right.}{b^{2}}\right)\right) \\
& -\frac{1}{d b}\left(\frac { 1 } { (b + d) ^ { 2 } } \left(d ^ { 2 } \left(\left(\frac{(b+d)(d x+c)}{d}+\frac{a d-b c}{d}\right) \mathrm{e}^{\frac{(b+d)(d x+c)}{d}+\frac{a d-b c}{d}}-\mathrm{e}^{\frac{(b+d)(d x+c)}{d}+\frac{a d-b c}{d}}+\frac{\mathrm{e}^{\frac{(b+d)(d x+c)}{d}+\frac{a d-b c}{d}}}{d c}\right.\right.\right. \\
& \left.\left.-\mathrm{e}^{\frac{(b+d)(d x+c)}{d}+\frac{a d-b c}{d}} a\right)\right)-c^{2} \mathrm{e}^{-\frac{-a d+b c}{d}} \mathrm{Ei}_{1}\left(-\frac{(b+d)(d x+c)}{d}-\frac{a d-b c}{d}-\frac{-a d+b c}{d}\right)-\frac{2 c \mathrm{e}^{d x+c+\frac{b(d x+c)}{d}+a-\frac{b c}{d}}}{1+\frac{b}{d}} \\
& -\frac{2 d \mathrm{e}^{d x+c+\frac{b(d x+c)}{d}+a-\frac{b c}{d}}}{b\left(1+\frac{b}{d}\right)}-\frac{2 d^{2} \mathrm{e}^{-\frac{-a d+b c}{d}} \mathrm{Ei}_{1}\left(-\frac{(b+d)(d x+c)}{d}-\frac{a d-b c}{d}-\frac{-a d+b c}{d}\right)}{b^{2}}
\end{aligned}
$$

Test results for the 40 problems in "8.4 Trig integral functions.txt"

Problem 1: Result unnecessarily involves higher level functions.
$\int x^{m} \operatorname{Si}(b x) \mathrm{d} x$
Optimal(type 4, 78 leaves, 5 steps):

$$
\frac{x^{m} \Gamma(1+m,-\mathrm{I} b x)}{2 b(1+m)(-\mathrm{I} b x)^{m}}+\frac{x^{m} \Gamma(1+m, \mathrm{I} b x)}{2 b(1+m)(\mathrm{I} b x)^{m}}+\frac{x^{1+m} \operatorname{Si}(b x)}{1+m}
$$

Result(type 5, 36 leaves):

$$
\frac{b x^{2+m} \text { hypergeom }\left(\left[\frac{1}{2}, 1+\frac{m}{2}\right],\left[\frac{3}{2}, \frac{3}{2}, 2+\frac{m}{2}\right],-\frac{b^{2} x^{2}}{4}\right)}{2+m}
$$

Problem 13: Unable to integrate problem.

$$
\int \frac{\operatorname{Si}(b x) \sin (b x)}{x^{3}} \mathrm{~d} x
$$

Optimal(type 4, 84 leaves, 14 steps):

$$
b^{2} \mathrm{Ci}(2 b x)-\frac{b \cos (b x) \operatorname{Si}(b x)}{2 x}-\frac{b^{2} \operatorname{Si}(b x)^{2}}{4}-\frac{b \cos (b x) \sin (b x)}{2 x}-\frac{\operatorname{Si}(b x) \sin (b x)}{2 x^{2}}-\frac{\sin (b x)^{2}}{4 x^{2}}-\frac{b \sin (2 b x)}{4 x}
$$

Result(type 8, 14 leaves):

$$
\int \frac{\mathrm{Si}(b x) \sin (b x)}{x^{3}} \mathrm{~d} x
$$

Problem 16: Unable to integrate problem.

$$
\int \frac{\cos (b x) \operatorname{Si}(b x)}{x^{2}} d x
$$

Optimal(type 4, 40 leaves, 7 steps):

$$
b \operatorname{Ci}(2 b x)-\frac{\cos (b x) \operatorname{Si}(b x)}{x}-\frac{b \operatorname{Si}(b x)^{2}}{2}-\frac{\sin (2 b x)}{2 x}
$$

Result(type 8, 14 leaves):

$$
\int \frac{\cos (b x) \operatorname{Si}(b x)}{x^{2}} \mathrm{~d} x
$$

Problem 22: Result more than twice size of optimal antiderivative.
$\int x \cos (b x+a) \operatorname{Si}(d x+c) d x$
Optimal(type 4, 350 leaves, 24 steps):

$$
\begin{aligned}
& \frac{c \operatorname{Ci}\left(\frac{c(b-d)}{d}+(b-d) x\right) \cos \left(a-\frac{b c}{d}\right)}{2 b d}-\frac{c \operatorname{Ci}\left(\frac{c(b+d)}{d}+(b+d) x\right) \cos \left(a-\frac{b c}{d}\right)}{2 b d}+\frac{\cos \left(a-\frac{b c}{d}\right) \operatorname{Si}\left(\frac{c(b-d)}{d}+(b-d) x\right)}{2 b^{2}} \\
& \quad+\frac{\cos (b x+a) \operatorname{Si}(d x+c)}{b^{2}}-\frac{\cos \left(a-\frac{b c}{d}\right) \operatorname{Si}\left(\frac{c(b+d)}{d}+(b+d) x\right)}{2 b^{2}}+\frac{\operatorname{Ci}\left(\frac{c(b-d)}{d}+(b-d) x\right) \sin \left(a-\frac{b c}{d}\right)}{2 b^{2}} \\
& \quad-\frac{\operatorname{Ci}\left(\frac{c(b+d)}{d}+(b+d) x\right) \sin \left(a-\frac{b c}{d}\right)}{}-\frac{c \operatorname{Si}\left(\frac{c(b-d)}{d}+(b-d) x\right) \sin \left(a-\frac{b c}{d}\right)}{2 b d}+\frac{c \operatorname{Si}\left(\frac{c(b+d)}{d}+(b+d) x\right) \sin \left(a-\frac{b c}{d}\right)}{2 b d} \\
& \quad+\frac{x \operatorname{Si}(d x+c) \sin (b x+a)}{b}-\frac{\sin (a-c+(b-d) x)}{2 b(b-d)}+\frac{\sin (a+c+(b+d) x)}{2 b(b+d)}
\end{aligned}
$$

Result(type 4, 1207 leaves):
$\frac{1}{d}\left(\frac{1}{b}\left(\operatorname{Si}(d x+c)\left(\frac{d\left(\cos \left(\frac{b(d x+c)}{d}+\frac{a d-b c}{d}\right)+\left(\frac{b(d x+c)}{d}+\frac{a d-b c}{d}\right) \sin \left(\frac{b(d x+c)}{d}+\frac{a d-b c}{d}\right)\right)}{b}\right.\right.\right.$

$$
\left.\left.-\frac{d a \sin \left(\frac{b(d x+c)}{d}+\frac{a d-b c}{d}\right)}{b}\right)\right)-\frac{1}{b}\left(\frac{d \sin \left(\frac{(b-d)(d x+c)}{d}+\frac{a d-b c}{d}\right)}{2(b-d)}+\frac{1}{2(b-d)}((a d\right.
$$

$$
-b c) d\left(\frac{\operatorname{Si}\left(\frac{(b-d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \sin \left(\frac{-a d+b c}{d}\right)}{d}\right.
$$

$$
\left.\left.+\frac{\operatorname{Ci}\left(\frac{(b-d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \cos \left(\frac{-a d+b c}{d}\right)}{d}\right)\right)
$$

$$
-\frac{1}{2(b-d)}\left(a d ^ { 2 } \left(\frac{\operatorname{Si}\left(\frac{(b-d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \sin \left(\frac{-a d+b c}{d}\right)}{d}\right.\right.
$$

$\left.\left.+\frac{\operatorname{Ci}\left(\frac{(b-d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \cos \left(\frac{-a d+b c}{d}\right)}{d}\right)\right)$
$+\frac{1}{2(b-d)}\left(d^{2} c\left(\frac{\operatorname{Si}\left(\frac{(b-d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \sin \left(\frac{-a d+b c}{d}\right)}{d}\right.\right.$
$\left.\left.+\frac{\operatorname{Ci}\left(\frac{(b-d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \cos \left(\frac{-a d+b c}{d}\right)}{d}\right)\right)-\frac{d \sin \left(\frac{(b+d)(d x+c)}{d}+\frac{a d-b c}{d}\right)}{2(b+d)}-\frac{1}{2(b+d)}((a d$
$-b c) d\left(\frac{\operatorname{Si}\left(\frac{(b+d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \sin \left(\frac{-a d+b c}{d}\right)}{d}\right.$
$\left.\left.+\frac{\operatorname{Ci}\left(\frac{(b+d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \cos \left(\frac{-a d+b c}{d}\right)}{d}\right)\right)$
$+\frac{1}{2(b+d)}\left(a d^{2}\left(\frac{\operatorname{Si}\left(\frac{(b+d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \sin \left(\frac{-a d+b c}{d}\right)}{d}\right.\right.$
$\left.\left.+\frac{\operatorname{Ci}\left(\frac{(b+d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \cos \left(\frac{-a d+b c}{d}\right)}{d}\right)\right)$
$+\frac{1}{2(b+d)}\left(d^{2} c\left(\frac{\operatorname{Si}\left(\frac{(b+d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \sin \left(\frac{-a d+b c}{d}\right)}{d}\right.\right.$
$\left.\left.+\frac{\operatorname{Ci}\left(\frac{(b+d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \cos \left(\frac{-a d+b c}{d}\right)}{d}\right)\right)$
$-\frac{1}{2 b}\left(d^{2}\left(\frac{\operatorname{Si}\left(\frac{(b-d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \cos \left(\frac{-a d+b c}{d}\right)}{d}\right.\right.$
$\left.\left.-\frac{\mathrm{Ci}\left(\frac{(b-d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \sin \left(\frac{-a d+b c}{d}\right)}{d}\right)\right)$
$+\frac{1}{2 b}\left(d^{2}\left(\frac{\operatorname{Si}\left(\frac{(b+d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \cos \left(\frac{-a d+b c}{d}\right)}{d}\right.\right.$
$\left.\left.\left.\left.-\frac{\mathrm{Ci}\left(\frac{(b+d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \sin \left(\frac{-a d+b c}{d}\right)}{d}\right)\right)\right)\right)$

Problem 28: Unable to integrate problem.

$$
\int x^{2} \operatorname{Ci}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right) \mathrm{d} x
$$

Optimal(type 4, 131 leaves, 7 steps):

Result(type 8, 19 leaves):

$$
\int x^{2} \operatorname{Ci}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right) \mathrm{d} x
$$

Problem 29: Unable to integrate problem.

$$
\int x \operatorname{Ci}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right) \mathrm{d} x
$$

Optimal (type 4, 131 leaves, 7 steps):

$$
\frac{x^{2} \operatorname{Ci}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)}{2}-\frac{x^{2} \operatorname{Ei}\left(\frac{(2-\mathrm{I} b d n)\left(a+b \ln \left(c x^{n}\right)\right)}{b n}\right)}{4 \mathrm{e}^{\frac{2 a}{b n}}\left(c x^{n}\right)^{\frac{2}{n}}}-\frac{x^{2} \operatorname{Ei}\left(\frac{(2+\mathrm{I} b d n)\left(a+b \ln \left(c x^{n}\right)\right)}{b n}\right)}{4 \mathrm{e}^{\frac{2 a}{b n}}\left(c x^{n}\right)^{\frac{2}{n}}}
$$

Result (type 8, 17 leaves):

$$
\int x \operatorname{Ci}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right) \mathrm{d} x
$$

Problem 30: Unable to integrate problem.

$$
\int \operatorname{Ci}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right) \mathrm{d} x
$$

Optimal(type 4, 118 leaves, 7 steps):

$$
x \operatorname{Ci}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)-\frac{x \operatorname{Ei}\left(\frac{(1-\mathrm{I} b d n)\left(a+b \ln \left(c x^{n}\right)\right)}{b n}\right)}{2 \mathrm{e}^{\frac{a}{b n}}\left(c x^{n}\right)^{\frac{1}{n}}}-\frac{x \operatorname{Ei}\left(\frac{(1+\mathrm{I} b d n)\left(a+b \ln \left(c x^{n}\right)\right)}{b n}\right)}{2 \mathrm{e}^{\frac{a}{b n}}\left(c x^{n}\right)^{\frac{1}{n}}}
$$

Result(type 8, 15 leaves):

$$
\int \mathrm{Ci}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right) \mathrm{d} x
$$

Problem 39: Result more than twice size of optimal antiderivative.

$$
\int x \operatorname{Ci}(d x+c) \sin (b x+a) \mathrm{d} x
$$

Optimal(type 4, 351 leaves, 24 steps):

$$
-\frac{c \mathrm{Ci}\left(\frac{c(b-d)}{d}+(b-d) x\right) \cos \left(a-\frac{b c}{d}\right)}{2 b d}-\frac{c \operatorname{Ci}\left(\frac{c(b+d)}{d}+(b+d) x\right) \cos \left(a-\frac{b c}{d}\right)}{2 b d}-\frac{x \operatorname{Ci}(d x+c) \cos (b x+a)}{b}
$$

$$
-\frac{\cos \left(a-\frac{b c}{d}\right) \operatorname{Si}\left(\frac{c(b-d)}{d}+(b-d) x\right)}{2 b^{2}}-\frac{\cos \left(a-\frac{b c}{d}\right) \operatorname{Si}\left(\frac{c(b+d)}{d}+(b+d) x\right)}{2 b^{2}}-\frac{\operatorname{Ci}\left(\frac{c(b-d)}{d}+(b-d) x\right) \sin \left(a-\frac{b c}{d}\right)}{2 b^{2}}
$$

$$
-\frac{\operatorname{Ci}\left(\frac{c(b+d)}{d}+(b+d) x\right) \sin \left(a-\frac{b c}{d}\right)}{2 b^{2}}+\frac{c \operatorname{Si}\left(\frac{c(b-d)}{d}+(b-d) x\right) \sin \left(a-\frac{b c}{d}\right)}{2 b d}+\frac{c \operatorname{Si}\left(\frac{c(b+d)}{d}+(b+d) x\right) \sin \left(a-\frac{b c}{d}\right)}{2 b d}
$$

$$
+\frac{\mathrm{Ci}(d x+c) \sin (b x+a)}{b^{2}}+\frac{\sin (a-c+(b-d) x)}{2 b(b-d)}+\frac{\sin (a+c+(b+d) x)}{2 b(b+d)}
$$

Result(type 4, 1207 leaves):
$\frac{1}{d}\left(\frac{1}{b}\left(\operatorname{Ci}(d x+c)\left(\frac{d\left(\sin \left(\frac{b(d x+c)}{d}+\frac{a d-b c}{d}\right)-\left(\frac{b(d x+c)}{d}+\frac{a d-b c}{d}\right) \cos \left(\frac{b(d x+c)}{d}+\frac{a d-b c}{d}\right)\right)}{b}\right.\right.\right.$

$$
\left.\left.+\frac{d \cos \left(\frac{b(d x+c)}{d}+\frac{a d-b c}{d}\right) a}{b}\right)\right)-\frac{1}{b}\left(-\frac{d \sin \left(\frac{(b-d)(d x+c)}{d}+\frac{a d-b c}{d}\right)}{2(b-d)}-\frac{1}{2(b-d)}((a d)\right.
$$

$$
-b c) d\left(\frac{\operatorname{Si}\left(\frac{(b-d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \sin \left(\frac{-a d+b c}{d}\right)}{d}\right.
$$

$\left.\left.+\frac{\operatorname{Ci}\left(\frac{(b-d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \cos \left(\frac{-a d+b c}{d}\right)}{d}\right)\right)$
$+\frac{1}{2(b-d)}\left(a d^{2}\left(\frac{\operatorname{si}\left(\frac{(b-d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \sin \left(\frac{-a d+b c}{d}\right)}{d}\right.\right.$
$\left.\left.+\frac{\operatorname{Ci}\left(\frac{(b-d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \cos \left(\frac{-a d+b c}{d}\right)}{d}\right)\right)$
$-\frac{1}{2(b-d)}\left(d^{2} c\left(\frac{\operatorname{Si}\left(\frac{(b-d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \sin \left(\frac{-a d+b c}{d}\right)}{d}\right.\right.$
$\left.\left.+\frac{\operatorname{Ci}\left(\frac{(b-d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \cos \left(\frac{-a d+b c}{d}\right)}{d}\right)\right)-\frac{d \sin \left(\frac{(b+d)(d x+c)}{d}+\frac{a d-b c}{d}\right)}{2(b+d)}-\frac{1}{2(b+d)}((a d$
$-b c) d\left(\frac{\operatorname{Si}\left(\frac{(b+d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \sin \left(\frac{-a d+b c}{d}\right)}{d}\right.$
$\left.\left.+\frac{\operatorname{Ci}\left(\frac{(b+d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \cos \left(\frac{-a d+b c}{d}\right)}{d}\right)\right)$
$+\frac{1}{2(b+d)}\left(a d^{2}\left(\frac{\operatorname{Si}\left(\frac{(b+d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \sin \left(\frac{-a d+b c}{d}\right)}{d}\right.\right.$
$\left.\left.+\frac{\operatorname{Ci}\left(\frac{(b+d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \cos \left(\frac{-a d+b c}{d}\right)}{d}\right)\right)$
$+\frac{1}{2(b+d)}\left(d^{2} c\left(\frac{\operatorname{Si}\left(\frac{(b+d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \sin \left(\frac{-a d+b c}{d}\right)}{d}\right.\right.$

$$
\begin{aligned}
& \left.\left.+\frac{\mathrm{Ci}\left(\frac{(b+d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \cos \left(\frac{-a d+b c}{d}\right)}{d}\right)\right) \\
& +\frac{1}{2 b}\left(d ^ { 2 } \left(\frac{\operatorname{Si}\left(\frac{(b-d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \cos \left(\frac{-a d+b c}{d}\right)}{d}\right.\right. \\
& \left.\left.-\frac{\mathrm{Ci}\left(\frac{(b-d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \sin \left(\frac{-a d+b c}{d}\right)}{d}\right)\right) \\
& +\frac{1}{2 b}\left(d ^ { 2 } \left(\frac{\operatorname{Si}\left(\frac{(b+d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \cos \left(\frac{-a d+b c}{d}\right)}{d}\right.\right. \\
& \left.\left.\left.-\frac{\mathrm{Ci}\left(\frac{(b+d)(d x+c)}{d}+\frac{a d-b c}{d}+\frac{-a d+b c}{d}\right) \sin \left(\frac{-a d+b c}{d}\right)}{d}\right)\right)\right)
\end{aligned}
$$

Test results for the 40 problems in " 8.5 Hyperbolic integral functions.txt"
Problem 1: Result unnecessarily involves higher level functions.
$\int x^{m} \operatorname{Shi}(b x) d x$
Optimal(type 4, 72 leaves, 5 steps):

$$
-\frac{x^{m} \Gamma(1+m,-b x)}{2 b(1+m)(-b x)^{m}}-\frac{x^{m} \Gamma(1+m, b x)}{2 b(1+m)(b x)^{m}}+\frac{x^{1+m} \operatorname{Shi}(b x)}{1+m}
$$

Result(type 5, 36 leaves):

$$
\frac{b x^{2+m} \text { hypergeom }\left(\left[\frac{1}{2}, 1+\frac{m}{2}\right],\left[\frac{3}{2}, \frac{3}{2}, 2+\frac{m}{2}\right], \frac{b^{2} x^{2}}{4}\right)}{2+m}
$$

Problem 10: Unable to integrate problem.

$$
\int \frac{\operatorname{Shi}(b x+a)}{x^{2}} \mathrm{~d} x
$$

Optimal(type 4, 46 leaves, 7 steps):

$$
\frac{b \cosh (a) \operatorname{Shi}(b x)}{a}-\frac{b \operatorname{Shi}(b x+a)}{a}-\frac{\operatorname{Shi}(b x+a)}{x}+\frac{b \operatorname{Chi}(b x) \sinh (a)}{a}
$$

Result(type 8, 12 leaves):

$$
\int \frac{\operatorname{Shi}(b x+a)}{x^{2}} \mathrm{~d} x
$$

Problem 13: Unable to integrate problem.

$$
\int \frac{\operatorname{Shi}(b x) \sinh (b x)}{x^{3}} \mathrm{~d} x
$$

Optimal(type 4, 84 leaves, 14 steps):

$$
b^{2} \operatorname{Chi}(2 b x)-\frac{b \cosh (b x) \operatorname{Shi}(b x)}{2 x}+\frac{b^{2} \operatorname{Shi}(b x)^{2}}{4}-\frac{b \cosh (b x) \sinh (b x)}{2 x}-\frac{\operatorname{Shi}(b x) \sinh (b x)}{2 x^{2}}-\frac{\sinh (b x)^{2}}{4 x^{2}}-\frac{b \sinh (2 b x)}{4 x}
$$

Result(type 8, 14 leaves):

$$
\int \frac{\operatorname{Shi}(b x) \sinh (b x)}{x^{3}} \mathrm{~d} x
$$

Problem 16: Unable to integrate problem.

$$
\int \frac{\cosh (b x) \operatorname{Shi}(b x)}{x^{2}} \mathrm{~d} x
$$

Optimal(type 4, 40 leaves, 7 steps):

$$
b \operatorname{Chi}(2 b x)-\frac{\cosh (b x) \operatorname{Shi}(b x)}{x}+\frac{b \operatorname{Shi}(b x)^{2}}{2}-\frac{\sinh (2 b x)}{2 x}
$$

Result(type 8, 14 leaves):

$$
\int \frac{\cosh (b x) \operatorname{Shi}(b x)}{x^{2}} \mathrm{~d} x
$$

Problem 20: Unable to integrate problem.

$$
\int \operatorname{Shi}(d x+c) \sinh (b x+a) \mathrm{d} x
$$

Optimal(type 4, 145 leaves, 9 steps):
$\frac{\cosh \left(a-\frac{b c}{d}\right) \operatorname{Shi}\left(\frac{c(b-d)}{d}+(b-d) x\right)}{2 b}+\frac{\cosh (b x+a) \operatorname{Shi}(d x+c)}{b}-\frac{\cosh \left(a-\frac{b c}{d}\right) \operatorname{Shi}\left(\frac{c(b+d)}{d}+(b+d) x\right)}{2 b}$

$$
+\frac{\operatorname{Chi}\left(\frac{c(b-d)}{d}+(b-d) x\right) \sinh \left(a-\frac{b c}{d}\right)}{2 b}-\frac{\operatorname{Chi}\left(\frac{c(b+d)}{d}+(b+d) x\right) \sinh \left(a-\frac{b c}{d}\right)}{2 b}
$$

Result(type 8, 15 leaves):

$$
\int \operatorname{Shi}(d x+c) \sinh (b x+a) \mathrm{d} x
$$

Problem 22: Unable to integrate problem.

$$
\int x \cosh (b x+a) \operatorname{Shi}(d x+c) \mathrm{d} x
$$

Optimal(type 4, 351 leaves, 24 steps):
$-\frac{c \operatorname{Chi}\left(\frac{c(b-d)}{d}+(b-d) x\right) \cosh \left(a-\frac{b c}{d}\right)}{2 b d}+\frac{c \operatorname{Chi}\left(\frac{c(b+d)}{d}+(b+d) x\right) \cosh \left(a-\frac{b c}{d}\right)}{2 b d}-\frac{\cosh \left(a-\frac{b c}{d}\right) \operatorname{Shi}\left(\frac{c(b-d)}{d}+(b-d) x\right)}{2 b^{2}}$

$$
\begin{aligned}
& -\frac{\cosh (b x+a) \operatorname{Shi}(d x+c)}{b^{2}}+\frac{\cosh \left(a-\frac{b c}{d}\right) \operatorname{Shi}\left(\frac{c(b+d)}{d}+(b+d) x\right)}{2 b^{2}}-\frac{\operatorname{Chi}\left(\frac{c(b-d)}{d}+(b-d) x\right) \sinh \left(a-\frac{b c}{d}\right)}{2 b^{2}} \\
& +\frac{\operatorname{Chi}\left(\frac{c(b+d)}{d}+(b+d) x\right) \sinh \left(a-\frac{b c}{d}\right)}{2 b^{2}}-\frac{c \operatorname{Shi}\left(\frac{c(b-d)}{d}+(b-d) x\right) \sinh \left(a-\frac{b c}{d}\right)}{2 b d}+\frac{c \operatorname{Shi}\left(\frac{c(b+d)}{d}+(b+d) x\right) \sinh \left(a-\frac{b c}{d}\right)}{2 b d}
\end{aligned}
$$

$$
+\frac{x \operatorname{Shi}(d x+c) \sinh (b x+a)}{b}+\frac{\sinh (a-c+(b-d) x)}{2 b(b-d)}-\frac{\sinh (a+c+(b+d) x)}{2 b(b+d)}
$$

Result(type 8, 16 leaves):

$$
\int x \cosh (b x+a) \operatorname{Shi}(d x+c) \mathrm{d} x
$$

Problem 26: Unable to integrate problem.

$$
\int \frac{\operatorname{Chi}(b x+a)}{x^{2}} \mathrm{~d} x
$$

Optimal(type 4, 46 leaves, 7 steps):

$$
-\frac{b \operatorname{Chi}(b x+a)}{a}-\frac{\operatorname{Chi}(b x+a)}{x}+\frac{b \operatorname{Chi}(b x) \cosh (a)}{a}+\frac{b \operatorname{Shi}(b x) \sinh (a)}{a}
$$

Result(type 8, 12 leaves):

$$
\int \frac{\operatorname{Chi}(b x+a)}{x^{2}} \mathrm{~d} x
$$

Problem 27: Unable to integrate problem.

$$
\int \frac{\operatorname{Chi}(b x+a)}{x^{3}} \mathrm{~d} x
$$

Optimal(type 4, 97 leaves, 11 steps):
$\frac{b^{2} \operatorname{Chi}(b x+a)}{2 a^{2}}-\frac{\operatorname{Chi}(b x+a)}{2 x^{2}}-\frac{b^{2} \operatorname{Chi}(b x) \cosh (a)}{2 a^{2}}-\frac{b \cosh (b x+a)}{2 a x}+\frac{b^{2} \cosh (a) \operatorname{Shi}(b x)}{2 a}+\frac{b^{2} \operatorname{Chi}(b x) \sinh (a)}{2 a}-\frac{b^{2} \operatorname{Shi}(b x) \sinh (a)}{2 a^{2}}$
Result(type 8, 12 leaves):

$$
\int \frac{\operatorname{Chi}(b x+a)}{x^{3}} \mathrm{~d} x
$$

Problem 28: Unable to integrate problem.

$$
\int x^{2} \operatorname{Chi}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right) \mathrm{d} x
$$

Optimal(type 4, 128 leaves, 7 steps):

Result(type 8, 19 leaves):

$$
\int x^{2} \operatorname{Chi}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right) \mathrm{d} x
$$

Problem 29: Unable to integrate problem.
$\int x \operatorname{Chi}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right) \mathrm{d} x$
Optimal(type 4, 128 leaves, 7 steps):

$$
\frac{x^{2} \operatorname{Chi}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)}{2}-\frac{x^{2} \operatorname{Ei}\left(\frac{(-b d n+2)\left(a+b \ln \left(c x^{n}\right)\right)}{b n}\right)}{4 \mathrm{e}^{\frac{2 a}{b n}}\left(c x^{n}\right)^{\frac{2}{n}}}-\frac{x^{2} \operatorname{Ei}\left(\frac{(b d n+2)\left(a+b \ln \left(c x^{n}\right)\right)}{b n}\right)}{4 \mathrm{e}^{\frac{2 a}{b n}}\left(c x^{n}\right)^{\frac{2}{n}}}
$$

Result(type 8, 17 leaves):

$$
\int x \operatorname{Chi}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right) \mathrm{d} x
$$

Problem 30: Unable to integrate problem.
$\int \operatorname{Chi}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right) \mathrm{d} x$
Optimal(type 4, 115 leaves, 7 steps):

Result(type 8, 15 leaves):
$\int \operatorname{Chi}\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right) \mathrm{d} x$

Problem 39: Unable to integrate problem.
$\int x \operatorname{Chi}(d x+c) \sinh (b x+a) d x$

Optimal(type 4, 351 leaves, 24 steps):
$\frac{c \operatorname{Chi}\left(\frac{c(b-d)}{d}+(b-d) x\right) \cosh \left(a-\frac{b c}{d}\right)}{2 b d}+\frac{c \operatorname{Chi}\left(\frac{c(b+d)}{d}+(b+d) x\right) \cosh \left(a-\frac{b c}{d}\right)}{2 b d}+\frac{x \operatorname{Chi}(d x+c) \cosh (b x+a)}{b}$
$+\frac{\cosh \left(a-\frac{b c}{d}\right) \operatorname{Shi}\left(\frac{c(b-d)}{d}+(b-d) x\right)}{2 b^{2}}+\frac{\cosh \left(a-\frac{b c}{d}\right) \operatorname{Shi}\left(\frac{c(b+d)}{d}+(b+d) x\right)}{2 b^{2}}+\frac{\operatorname{Chi}\left(\frac{c(b-d)}{d}+(b-d) x\right) \sinh \left(a-\frac{b c}{d}\right)}{2 b^{2}}$
$+\frac{\operatorname{Chi}\left(\frac{c(b+d)}{d}+(b+d) x\right) \sinh \left(a-\frac{b c}{d}\right)}{2 b^{2}}+\frac{c \operatorname{Shi}\left(\frac{c(b-d)}{d}+(b-d) x\right) \sinh \left(a-\frac{b c}{d}\right)}{2 b d}+\frac{c \operatorname{Shi}\left(\frac{c(b+d)}{d}+(b+d) x\right) \sinh \left(a-\frac{b c}{d}\right)}{2 b d}$
$-\frac{\operatorname{Chi}(d x+c) \sinh (b x+a)}{b^{2}}-\frac{\sinh (a-c+(b-d) x)}{2 b(b-d)}-\frac{\sinh (a+c+(b+d) x)}{2 b(b+d)}$
Result(type 8, 16 leaves):

$$
\int x \operatorname{Chi}(d x+c) \sinh (b x+a) \mathrm{d} x
$$

Test results for the 63 problems in " 8.6 Gamma functions.txt"
Problem 1: Result more than twice size of optimal antiderivative.

$$
\int x^{100} \mathrm{Ei}_{1}(a x) \mathrm{d} x
$$

Optimal(type 4, 21 leaves, 1 step):

$$
\frac{x^{101} \mathrm{Ei}_{1}(a x)}{101}-\frac{\Gamma(101, a x)}{101 a^{101}}
$$

Result(type 4, 1321 leaves):
$\frac{1}{a^{101}}($
$-1 /$
$101($
$933262154439441526816992388562667004907159682643816214685929638952175999932299156089414639761565182862536979208272237582511852109168 \backslash$
$\left.64000000000000000000000000 \mathrm{e}^{-a x}\right)$
$-1 /$
$150417367799215597054291509769577641937162306114776993008430981080550850952184245627205614387649525152389280458342400000000000000000 \backslash$
$\left.000 a^{24} x^{24} \mathrm{e}^{-a x}\right)$
$-1 /$
$101($
$830303870251670095739689133928068583493135929753569001406539015564640697256057035862174991419825378841188828130050048000000000000000 \backslash$
$\left.00000 a^{22} x^{22} \mathrm{e}^{-a x}\right)$
$-1 \mid$
$101($
$383600388056271584231736379874767685573828799546148878649821025190864002132298350568324846035959325024629238596083122176000000000000 \backslash$
$\left.00000000 a^{20} x^{20} \mathrm{e}^{-a x}\right)$
$-1 /$

101 (

1457681474613832020080598243524117205180549438275365738869319895725283208102733732159634414936645435093591106665115864268800000000000 $\left.00000000000 a^{18} x^{18} \mathrm{e}^{-a x}\right)$

- 1 |
$101($
$446050531231832598144663062518379864785248128112261916094011888091936661679436522040848130970613503138638878639525454466252800000000 \backslash$
$\left.0000000000000 a^{16} x^{16} \mathrm{e}^{-a x}\right)$
$-\frac{1544745660480658589417716947971599850793795457612196415341375333993504621840071171686531072000000000000000 a^{43} x^{43} \mathrm{e}^{-a x}}{101}$
101
$-\underline{2789810662828069412488396808036709330533594596447626726106523853192269347043168536065875116032000000000000000 ~} a^{41} x^{41} \mathrm{e}^{-a x}$ 101
$-\frac{4575289487038033836480970765180203302075095138174107830814699119235321729150796399148035190292480000000000000000 a^{39} x^{39} \mathrm{e}^{-a x}}{101}$
$-\frac{6780579019790366145664798673997061293675290994774027805267384094706746802601480263537388152013455360000000000000000 a^{37} x^{37} \mathrm{e}^{-a x}}{101}$
$-\underline{9031731254360767706025511833764085643175487605039005036616155614149386741065171711031801018481922539520000000000000000 a^{35} x^{35} \mathrm{e}^{-a x}}$
$-\frac{100 a^{99} x^{99} \mathrm{e}^{-a x}}{101}-\frac{970200 a^{97} x^{97} \mathrm{e}^{-a x}}{101}-\frac{9034502400 a^{95} x^{95} \mathrm{e}^{-a x}}{101}-\frac{9900 a^{98} x^{98} \mathrm{e}^{-a x}}{101}-\frac{94109400 a^{96} x^{96} \mathrm{e}^{-a x}}{101}$
-11

101 (
$107052127495639823554719135004411167548459550746942859862562853142064798803064765289803551432947240753273330873486109071900672000000 \backslash$
$\left.0000000000000000 a^{14} x^{14} \mathrm{e}^{-a x}\right)$
-11

101 (
$194834872042064478869588825708028324938196382359436004949864392718557933821577872827442463607963978170957462189744718510859223040000 \backslash$ $\left.000000000000000000 a^{12} x^{12} \mathrm{e}^{-a x}\right)$
-11
$101($
$257182031095525112107857249934597388918419224714455526533820998388496472644482792132224051962512451185663850090463028434334174412800 \backslash$
$\left.00000000000000000000 a^{10} x^{10} \mathrm{e}^{-a x}\right)$
$-1 /$
$101($
$231463827985972600897071524941137650026577302243009973880438898549646825380034512919001646766261206067097465081416725590900756971520 \backslash$
$\left.0000000000000000000000 a^{8} x^{8} \mathrm{e}^{-a x}\right)$
$-1 /$
$101($
$129619743672144656502360053967037084014883289256085585373045783187802222212819327234640922189106275397574580445593366330904423904051 \backslash$
$\left.200000000000000000000000 a^{6} x^{6} \mathrm{e}^{-a x}\right)$
$-1 /$
$101($
$388859231016433969507080161901111252044649867768256756119137349563406666638457981703922766567318826192723741336780098992713271712153 \backslash$
$\left.6000000000000000000000000 a^{4} x^{4} \mathrm{e}^{-a x}\right)-\frac{858277728000 a^{94} x^{94} \mathrm{e}^{-a x}}{101}-\frac{7503063898176000 a^{92} x^{92} \mathrm{e}^{-a x}}{101}-\frac{62815650955529472000 a^{90} x^{90} \mathrm{e}^{-a x}}{101}$
$-\frac{503153364153791070720000 a^{88} x^{88} \mathrm{e}^{-a x}}{101}-\frac{3852142155961424437432320000 a^{86} x^{86} \mathrm{e}^{-a x}}{101}-\frac{28159159160078012637630259200000 a^{84} x^{84} \mathrm{e}^{-a x}}{101}$
$-\frac{196325657664063904109558167142400000 a^{82} x^{82} \mathrm{e}^{-a x}}{101}-\frac{1303995018204712451095685346159820800000 a^{80} x^{80} \mathrm{e}^{-a x}}{101}$
$-\frac{8241248515053782690924731387730067456000000 a^{78} x^{78} \mathrm{e}^{-a x}}{101}-\frac{49496938581413018841693936714706785140736000000 a^{76} x^{76} \mathrm{e}^{-a x}}{101}$
-11
$101($
$466631077219720763408496194281333502453579841321908107342964819476087999966149578044707319880782591431268489604136118791255926054584 \backslash$
$\left.32000000000000000000000000 a^{2} x^{2} \mathrm{e}^{-a x}\right)$
$-1 /$
$101($
$933262154439441526816992388562667004907159682643816214685929638952175999932299156089414639761565182862536979208272237582511852109168 \backslash$
$\left.64000000000000000000000000 a x \mathrm{e}^{-a x}\right)$
$-1 /$
$101($
$6016694711968623882171660390783105677486492244591079720337239243222034038087369825088224575505981006095571218333696000000000000000000 \backslash$
$\left.0 a^{25} x^{25} \mathrm{e}^{-a x}\right)$
-11
$101($
$3610016827181174329302996234469863406491895346754647832202343545933220422852421895052934745303588603657342731000217600000000000000000 \backslash$ $\left.0000 a^{23} x^{23} \mathrm{e}^{-a x}\right)$

101(
$182666851455367421062731609464175088368489904545785180309438583424220953396332547889678498112361583345061542188611010560000000000000 \backslash$ $\left.0000000 a^{21} x^{21} \mathrm{e}^{-a x}\right)$
-11

101(

767200776112543168463472759749535371147657599092297757299642050381728004264596701136649692071918650049258477192166244352000000000000
$000000000 a^{19} x^{19} \mathrm{e}^{-a x}$
$-1 \mid$
101(
$262382665430489763614507683834341096932498898889565832996477581230550977458492071788734194688596178316846399199720855568384000000000 \backslash$ $\left.000000000000 a^{17} x^{17} \mathrm{e}^{-a x}\right)$
$-1 \mid$
101(
$155543692406573587802832064760444500817859947107302702447654939825362666655383192681569106626927530477089496534712039597085308684861 \backslash$ $\left.44000000000000000000000000 a^{3} x^{3} \mathrm{e}^{-a x}\right)$

- 1 |
$101\left(10747760192689313570170359082179261915378830249996415993573225180837770221867554336127843211993487822028800000000000000000 a^{33} x^{33}\right.$
$\left.\mathrm{e}^{-a x}\right)$
$-1 /$

101 (113496347634799151300998991907813005826400447439962152892133257909646853542921373789510024318651231400624128000000000000000000
$\left.a^{31} x^{31} \mathrm{e}^{-a x}\right)$
$-1 /$
$101($
$10555160330036321070992906247426609541855241611916480218968392985597157379491687762424432261634564520258043904000000000000000000 a^{29}$
$\left.x^{29} \mathrm{e}^{-a x}\right)$
$-1 /$
$101($

85707901879894927096462398729104069479864561888761819378023351043048917921472504630886389964472663904495316500480000000000000000000
$\left.a^{27} x^{27} \mathrm{e}^{-a x}\right)+\frac{a^{101} x^{101} \mathrm{Ei}_{1}(a x)}{101}-\frac{a^{100} x^{100} \mathrm{e}^{-a x}}{101}$
$-\frac{2508814237322435473895975509378912678659857668066390287948932115041496316962547697508833616244978483200000000000000000 a^{36} x^{36} \mathrm{e}^{-a x}}{101}$
$-1 /$
$101\left(316110593902626869710892914181742997511142066176365176281565446495228535937281009886113035646867288883200000000000000000 a^{34} x^{34}\right.$ $\left.\mathrm{e}^{-a x}\right)-\frac{1524080034635720828362134682957222503982458470400000000 a^{72} x^{72} \mathrm{e}^{-a x}}{101}$

```
\(-\underline{7791097137057804874587232499277321440358327700684800000000 a^{70} x^{70} \mathrm{e}^{-a x}}\)
    101
\(-\frac{37630999171989197544256332971509462556930722794307584000000000 a^{68} x^{68} \mathrm{e}^{-a x}}{101}\)
\(-\frac{171446832227582784011631853018197111409376373050865352704000000000 a^{66} x^{66} \mathrm{e}^{-a x}}{101}\)
\(-735506910256330143409900649448065607946224640388212363100160000000000 a^{64} x^{64} e^{-a x}\)
    101
\(-\frac{2965563862153523138228719418574600531239177750045272248019845120000000000 a^{62} x^{62} \mathrm{e}^{-a x}}{101}\)
    101
\(-\frac{11215762526664624508781016841049139209146570250671219642011054243840000000000 a^{60} x^{60} \mathrm{e}^{-a x}}{101}\)
\(-\underline{39703799344392770761084799617313952800378858687376117532719132023193600000000000} a^{58} x^{58} \mathrm{e}^{-a x}\)
    101
\(-\frac{131260760632562500136146347534839927958052506820465444563169450468678041600000000000 a^{56} x^{56} \mathrm{e}^{-a x}}{101}\)
\(-\frac{404283142748292500419330750407306978110801721007033569254561907443528368128000000000000 a^{54} x^{54} \mathrm{e}^{-a x}}{101}\)
                            101
\(-\frac{1157058354545613136200124607665712571353114525522130075206556179103378189582336000000000000 a^{52} x^{52} \mathrm{e}^{-a x}}{101}\)
\(-\underline{3068518756254966037202730459529469739228459721684688959447786986982158958772355072000000000000} a^{50} x^{50} \mathrm{e}^{-a x}\)
                            101
\(-\underline{7517870952824666791146689625847200861109726318127487950647078118106289448992269926400000000000000 ~} a^{48} x^{48} \mathrm{e}^{-a x}\)
                            101
\(-\frac{16960316869572448280826931795911285142663542573695612816659808234447788996926560953958400000000000000 a^{46} x^{46} \mathrm{e}^{-a x}}{101}\)
\(-\underline{35107855920014967941311748817536360245313533127549918530485803045306923223637981174693888000000000000000} a^{44} x^{44} \mathrm{e}^{-a x}\)
                            101
\(-\frac{66424063400668319344961828762778793584133204677324445859679139361720698739123060382520836096000000000000000}{} a^{42} x^{42} \mathrm{e}^{-a x}\)
                            101
\(-\frac{114382237175950845912024269129505082551877378454352695770367477980883043228769909978700879757312000000000000000 a^{40} x^{40} \mathrm{e}^{-a x}}{101}\)
\(-\underline{178436289994483319622757859842027928780928710388790205401773265650177547436881059566773372421406720000000000000000} a^{38} x^{38} \mathrm{e}^{-a x}\)
                                    101
\(-1 /\)
```

101 (
$713680849970932157031460900029407783656397004979619065750419020947098658687098435265357009552981605021822205823240727146004480000000 \backslash$
$\left.00000000000000 a^{15} x^{15} \mathrm{e}^{-a x}\right)$
-11

101 (
$149872978493895752976606789006175634567843371045720003807587994398890718324290671405724972006126137054582663222880552700660940800000 \backslash$ $\left.00000000000000000 a^{13} x^{13} \mathrm{e}^{-a x}\right)$
$-1 /$
101 (
$233801846450477374643506590849633989925835658831323205939837271262269520585893447392930956329556773805148954627693662213031067648000 \backslash$
$\left.0000000000000000000 a^{11} x^{11} \mathrm{e}^{-a x}\right)$
-11

101 (
$257182031095525112107857249934597388918419224714455526533820998388496472644482792132224051962512451185663850090463028434334174412800 \backslash$ $\left.000000000000000000000 a^{9} x^{9} \mathrm{e}^{-a x}\right)$
$-1 /$
101 (
$185171062388778080717657219952910120021261841794407979104351118839717460304027610335201317413008964853677972065133380472720605577216 \backslash$ $\left.00000000000000000000000 a^{7} x^{7} \mathrm{e}^{-a x}\right)$
-11
$777718462032867939014160323802222504089299735536513512238274699126813333276915963407845533134637652385447482673560197985426543424307 \backslash$

```
\(\left.200000000000000000000000 a^{5} x^{5} \mathrm{e}^{-a x}\right)-\frac{80678106432000 a^{93} x^{93} \mathrm{e}^{-a x}}{101}-\frac{690281878632192000 a^{91} x^{91} \mathrm{e}^{-a x}}{101}-\frac{5653408585997652480000 a^{89} x^{89} \mathrm{e}^{-a x}}{101}\)
\(-\frac{44277496045533614223360000 a^{87} x^{87} \mathrm{e}^{-a x}}{101}-\frac{331284225412682501619179520000 a^{85} x^{85} \mathrm{e}^{-a x}}{101}-\frac{2365369369446553061560941772800000 a^{83} x^{83} \mathrm{e}^{-a x}}{101}\)
\(-\frac{16098703928453240136983769705676800000 a^{81} x^{81} \mathrm{e}^{-a x}}{101}-\frac{104319601456376996087654827692785664000000 a^{79} x^{79} \mathrm{e}^{-a x}}{101}\)
\(-\frac{642817384174195049892129048242945261568000000 a^{77} x^{77} \mathrm{e}^{-a x}}{101}-\frac{3761767332187389431968739190317715670695936000000 a^{75} x^{75} \mathrm{e}^{-a x}}{101}\)
\(-\underline{20877808693640011347426502506263321972362444800000000 a^{73} x^{73} \mathrm{e}^{-a x}}\)
\(-\frac{109733762493771899642073697172920020286737009868800000000 a^{71} x^{71} \mathrm{e}^{-a x}}{101}\)
\(-\underline{5453767995940463412211062749494125008250829390479360000000000 a^{69} x^{69} \mathrm{e}^{-a x}}\)
    101
\(-\frac{2558907943695265433009430642062643453871289150012915712000000000 a^{67} x^{67} \mathrm{e}^{-a x}}{101}\)
\(-\frac{11315490927020463744767702299201009353018840621357113278464000000000 a^{65} x^{65} \mathrm{e}^{-a x}}{101}\)
\(-\underline{47072442256405129178233641564676198908558376984845591238410240000000000 a^{63} x^{63} \mathrm{e}^{-a x}}\)
    101
\(-\frac{183864959453518434570180603951625232936829020502806879377230397440000000000 a^{61} x^{61} \mathrm{e}^{-a x}}{101}\)
\(-\frac{672945751599877470526861010462948352548794215040273178520663254630400000000000 a^{59} x^{59} \mathrm{e}^{-a x}}{101}\)
\(-\underline{2302820361974780704142918377804209262421973803867814816897709657345228800000000000 ~} a^{57} x^{57} \mathrm{e}^{-a x}\)
    101
\(-\frac{7350602595423500007624195461951035965650940381946064895537489226245970329600000000000 a^{55} x^{55} \mathrm{e}^{-a x}}{101}\)
\(-\frac{21831289708407795022643860521994576817983292934379812739746343001950531878912000000000000 a^{53} x^{53} \mathrm{e}^{-a x}}{101}\)
    101
\(-\underline{601670344363718830824064795986170537103619553271507639107409213133756658582814720000000000000} a^{51} x^{51} \mathrm{e}^{-a x}\)
101
\(-\underline{1534259378127483018601365229764734869614229860842344479723893493491079479386177536000000000000000 a^{49} x^{49} \mathrm{e}^{-a x}}\)
```

$-\underline{360857805735584005975041102040665641333266863270119421631059749669101893551628956467200000000000000} a^{47} x^{47} \mathrm{e}^{-a x}$
$-\frac{780174576000332620918038862611919116562522958389998189566351178784598293858621803882086400000000000000 a^{45} x^{45} \mathrm{e}^{-a x}}{101}$
$-1 /$

```

101 (354676086358747347815621849711915643207501398249881727787916430967646417321629293092218825995785098126950400000000000000000 \(a^{32}\)
\(\left.x^{32} \mathrm{e}^{-a x}\right)\)
\(-11\)
101 (351838677667877369033096874914220318061841387063882673965613099519905245983056258747481075387818817341934796800000000000000000
\(\left.a^{30} x^{30} \mathrm{e}^{-a x}\right)\)
\(-11\)
101 (
\(306099649571053311058794281175371676713802006745577926350083396582317564005258945110308535587402371087483273216000000000000000000 a^{28}\)
\(\left.x^{28} \mathrm{e}^{-a x}\right)\)
\(-11\)

101 (
231411335075716303160448476568580987595634317099656912320663047816232078387975762503393252904076192542137354551296000000000000000000
\(\left.\left.a^{26} x^{26} \mathrm{e}^{-a x}\right)-\frac{282132549914054207397655439273828675302195200000000 a^{74} x^{74} \mathrm{e}^{-a x}}{101}\right)\)

Problem 3: Result more than twice size of optimal antiderivative.
\(\int \frac{\mathrm{Ei}_{1}(a x)}{x^{3}} \mathrm{~d} x\)
Optimal(type 4, 21 leaves, 1 step):
\[
\frac{\mathrm{Ei}_{3}(a x)}{2 x^{2}}-\frac{\mathrm{Ei}_{1}(a x)}{2 x^{2}}
\]

Result(type 4, 51 leaves):
\[
a^{2}\left(-\frac{\mathrm{Ei}_{1}(a x)}{2 a^{2} x^{2}}+\frac{\mathrm{e}^{-a x}}{4 a^{2} x^{2}}-\frac{\mathrm{e}^{-a x}}{4 a x}+\frac{\mathrm{Ei}_{1}(a x)}{4}\right)
\]

Problem 7: Maple result simpler than optimal antiderivative, IF it can be verified!
\[
\int x^{100} \mathrm{e}^{-a x}(a x+1) \mathrm{d} x
\]

Optimal(type 4, 26 leaves, 1 step):
\[
\frac{x^{101} \mathrm{e}^{-a x}(a x+1)}{101}-\frac{\Gamma(103, a x)}{101 a^{101}}
\]

Result(type 3, 815 leaves):
\(-\frac{1}{a^{101}}\left(\left(x^{101} a^{101}+102 x^{100} a^{100}+10200 x^{99} a^{99}+1009800 x^{98} a^{98}+98960400 x^{97} a^{97}+9599158800 x^{96} a^{96}+921519244800 x^{95} a^{95}+87544328256000 x^{94} a^{94}\right.\right.\)
\(+8229166856064000 x^{93} a^{93}+765312517613952000 x^{92} a^{92}+70408751620483584000 x^{91} a^{91}+6407196397464006144000 x^{90} a^{90}\)
\(+576647675771760552960000 x^{89} a^{89}+51321643143686689213440000 x^{88} a^{88}+4516304596644428650782720000 x^{87} a^{87}\)
\(+392918499908065292618096640000 x^{86} a^{86}+33790990992093615165156311040000 x^{85} a^{85}+2872234234327957289038286438400000 x^{84} a^{84}\)
\(+241267675683548412279216060825600000 x^{83} a^{83}+20025217081734518219174933048524800000 x^{82} a^{82}\)
\(+1642067800702230493972344509979033600000 x^{81} a^{81}+133007491856880670011759905308301721600000 x^{80} a^{80}\)
\(+10640599348550453600940792424664137728000000 x^{79} a^{79}+840607348535485834474322601548466880512000000 x^{78} a^{78}\)
\(+65567373185767895088997162920780416679936000000 x^{77} a^{77}+5048687735304127921852781544900092084355072000000 x^{76} a^{76}\)
\(+383700267883113722060811397412406998410985472000000 x^{75} a^{75}+28777520091233529154560854805930524880823910400000000 x^{74} a^{74}\)
\(+2129536486751281157437503255638858841180969369600000000 x^{73} a^{73}+155456163532843524492937737661636695406210763980800000000 x^{72} a^{72}\)
\(+11192843774364733763491517111637842069247175006617600000000 x^{71} a^{71}\)
\(+794691907979896097207897714926286786916549425469849600000000 x^{70} a^{70}\)
\(+55628433558592726804552840044840075084158459782889472000000000 x^{69} a^{69}\)
\(+3838361915542898149514145963093965180806933725019373568000000000 x^{68} a^{68}\)
\(+261008610256917074166961925490389632294871493301317402624000000000 x^{67} a^{67}\)
\(+17487576887213443969186449007856105363756390051188265975808000000000 x^{66} a^{66}\)
\(+1154180074556087301966305634518502954007921743378425554403328000000000 x^{65} a^{65}\)
\(+75021704846145674627809866243702692010514913319597661036216320000000000 x^{64} a^{64}\)
\(+4801389110153323176179831439596972288672954452454250306317844480000000000 x^{63} a^{63}\)
\(+302487513939659360099329380694609254186396130504617769298024202240000000000 x^{62} a^{62}\)
\(+18754225864258880326158421603065773759556560091286301696477500538880000000000 x^{61} a^{61}\)
```

+1144007777719791699895663717787012199332950165568464403485127532871680000000000 矢0 a co
+686404666631875019937398230672207319599770099341078642091076519723008000000000000 x 59 a
+40497875331280626176306495609660231856386435861123639883373514663657472000000000000 x 58 a
+2348876769214276318225776745360293447670413279945171113235663850492133376000000000000 x 57 a}\mp@subsup{a}{}{57
+13388597584521375013886927448553672651721355695687475345443283947805160243200000000000 x 56 a
+749761464733197000777667937119005668496395918958498619344823901077088973619200000000000 x 55 a 55
+41236880560325835042771736541545311767301775542717424063965314559239893549056000000000000 x 54 a }\mp@subsup{a}{}{54
+2226791550257595092309673773243446835434295879306740899454126986198954251649024000000000000 \mp@subsup{x}{}{53}\mp@subsup{a}{}{53}
+1180199521636525398924127099819026822780176816032572676710687302685445753373982720000000000000 x 52 a a2
+61370375125099320744054609190589394784569194433693779188955739739643179175447101440000000000000 \mp@subsup{x}{}{51}\mp@subsup{a}{}{51}
+312988913138006535794678506872005913401302891611838273863674272672180213794780217344000000000000 \mp@subsup{x}{}{50}\mp@subsup{a}{}{50}

+ 15649445656900326789733925343600295670065144580591913693183713633609010689739010867200000000000000 x 49 a }\mp@subsup{a}{}{49
+7668228371881160126969623418364144878331920844490037709660019680468415237972115324928000000000000000 x 48 a}\mp@subsup{a}{}{48
+368074961850295686094541924081478954159932200535521810063680944662483931422661535596544000000000000000 x 47 a a7
+17299523206963897246443470431829510845516813425169525072993004399136744776865092173037568000000000000000 x 46 a }\mp@subsup{a}{}{46
+795778067520339273336399639864157498893773417557798153357678202360290259735794239959728128000000000000000 x 45 a
+35810013038415267300137983793887087450219803790100916901095519106213061688110740798187765760000000000000000 午 a a 44
+157564057369027176120607128693103184780967136676444034364820284067337471427687259512026169344000000000000000 x 43 a}\mp@subsup{a}{}{43
+67752544668681685731861065338034369455815868770870934776872722148955112713905521590171252817920000000000000000 x 42 a 42
+2845606876084630800738164744197443517144266488376579260628654330256114733984031906787192618352640000000000000000 41 a al
+116669881919469862830264754512095184202914926023439749685774827540500704093345308178274897352458240000000000000000 年0 a 40
+4666795276778794513210590180483807368116597040937589987430993101620028163733812327130995894098329600000000000000000 x 39 a a
+1820050157943729860152130170388684873565472845965660095098087309631810983856186807581088398698334854400000000000000000 x 38 a 38
+6916190600186173468578094647477002519548796814669508361372731776600881738653509868808135915053724467200000000000000000 x 37 a a7
+255899052206888418337389501956649093223305482142771809370791075734232624330179865145901028856987805286400000000000000000 x 36 a 36
+9212365879447983060146022070439367356038997357139785137348478726432374475886475145252437038851560990310400000000000000000 x 35 a 35
+322432805780679407105110772465377857461364907499892479807196755425133106656026630083835296359804634660864000000000000000000 x 34 a 34
+10962715396543099841573766263822847153686406854996344313444689684454525626304905422850400076233357578469376000000000000000000 x 33 a 33
+361769608085922294771934286706153956071651426214879362343674759586999345668061878954063202515700800089489408000000000000000000 x 32
a
+11576627458749513432701897174596926594292845638876139594997592306783979061377980126530022480502425602863661056000000000000000000 x 31
a 31
+358875451221234916413758812412504724423078214805160327444925361510303350902717383922430696895575193688773492736000000000000000000
x 30}\mp@subsup{a}{}{30

```
\(+1076626353663704749241276437237514173269234644415480982334776084530910052708152151767292090686725581066320478208000000000000000000 \backslash\) \(x^{29} a^{29}\)
\(+3122216425624743772799701667988791102480780468804894848770850645139639152853641240125147062991504185092329386803200000000000000000 \backslash\) \(0 x^{28} a^{28}\)
\(+8742205991749282563839164670368615086946185312653705576558381806390989627990195472350411776376211718258522283048960000000000000000 \backslash\) \(00 x^{27} a^{27}\)
\(+2360395617772306292236574460999526073475470034416500505670763087725567199557352777534611179621577163929801016423219200000000000000 \backslash\) \(0000 x^{26} a^{26}\)
\(+6137028606207996359815093598598767791036222089482901314743984028086474718849117221589989067016100626217482642700369920000000000000 \backslash\) \(00000 x^{25} a^{25}\)
\(+1534257151551999089953773399649691947759055522370725328685996007021618679712279305397497266754025156554370660675092480000000000000 \backslash\) \(0000000 x^{24} a^{24}\)
\(+3682217163724797815889056159159260674621733253689740788846390416851884831309470332953993440209660375730489585620221952000000000000 \backslash\) \(00000000 x^{23} a^{23}\)
\(+8469099476567034976544829166066299551629986483486403814346697958759335112011781765794184912482218864180126046926510489600000000000 \backslash\) \(000000000 x^{22} a^{22}\)
\(+1863201884844747694839862416534585901358597026367008839156273550927053724642591988474720680746088150119627730323832307712000000000 \backslash\) \(00000000000 x^{21} a^{21}\)
\(+3912723958173970159163711074722630392853053755370718562228174456946812821749443175796913429566785115251218233680047846195200000000 \backslash\) \(000000000000 x^{20} a^{20}\)
\(+7825447916347940318327422149445260785706107510741437124456348913893625643498886351593826859133570230502436467360095692390400000000 \backslash\) \(0000000000000 x^{19} a^{19}\)
\(+1486835104106108660482210208394599549284160427040873053646706293639788872264788406802827103235378343795462928798418181554176000000 \backslash\) \(000000000000000 x^{18} a^{18}\)
\(+2676303187390995588867978375110279188711488768673571496564071328551619970076619132245088785823681018831833271837152726797516800000 \backslash\) \(0000000000000000 x^{17} a^{17}\)
\(+4549715418564692501075563237687474620809530906745071544158921258537753949130252524816650935900257732014116562123159635555778560000 \backslash\) \(00000000000000000 x^{16} a^{16}\)
\(+7279544669703508001720901180299959393295249450792114470654274013660406318608404039706641497440412371222586499397055416889245696000 \backslash\) \(000000000000000000 x^{15} a^{15}\)
\(+1091931700455526200258135177044993908994287417618817170598141102049060947791260605955996224616061855683387974909558312533386854400 \backslash\) \(00000000000000000000 x^{14} a^{14}\)
\(+1528704380637736680361389247862991472592002384666344038837397542868685326907764848338394714462486597956743164873381637546741596160 \backslash\) \(000000000000000000000 x^{13} a^{13}\)
\(+1987315694829057684469806022221888914369603100066247250488616805729290924980094302839913128801232577343766114335396128810764075008 \backslash\) \(0000000000000000000000 x^{12} a^{12}\)
\(+2384778833794869221363767226666266697243523720079496700586340166875149109976113163407895754561479092812519337202475354572916890009 \backslash\) \(60000000000000000000000 x^{11} a^{11}\)
\(+2623256717174356143500143949332893366967876092087446370644974183562664020973724479748685330017627002093771270922722890030208579010 \backslash\) \(560000000000000000000000 x^{10} a^{10}\)
\(+2623256717174356143500143949332893366967876092087446370644974183562664020973724479748685330017627002093771270922722890030208579010 \backslash\) \(5600000000000000000000000 x^{9} a^{9}\)
\(+2360931045456920529150129554399604030271088482878701733580476765206397618876352031773816797015864301884394143830450601027187721109 \backslash\) \(50400000000000000000000000 x^{8} a^{8}\)
\(+1888744836365536423320103643519683224216870786302961386864381412165118095101081625419053437612691441507515315064360480821750176887 \backslash\) \(603200000000000000000000000 x^{7} a^{7}\)
\(+1322121385455875496324072550463778256951809550412072970805066988515582666570757137793337406328884009055260720545052336575225123821 \backslash\) \(3222400000000000000000000000 x^{6} a^{6}\)
\(+7932728312735252977944435302782669541710857302472437824830401931093495999424542826760024437973304054331564323270314019451350742927 \backslash\) \(9334400000000000000000000000 x^{5} a^{5}\)
\(+3966364156367626488972217651391334770855428651236218912415200965546747999712271413380012218986652027165782161635157009725675371463 \backslash\) \(96672000000000000000000000000 a^{4} x^{4}\)
\(+1586545662547050595588887060556533908342171460494487564966080386218699199884908565352004887594660810866312864654062803890270148585 \backslash\) \(586688000000000000000000000000 a^{3} x^{3}\)
\(+4759636987641151786766661181669601725026514381483462694898241158656097599654725696056014662783982432598938593962188411670810445756 \backslash\) \(760064000000000000000000000000 a^{2} x^{2}\)
\(+9519273975282303573533322363339203450053028762966925389796482317312195199309451392112029325567964865197877187924376823341620891513 \backslash\) \(520128000000000000000000000000 a x\)
\(+9519273975282303573533322363339203450053028762966925389796482317312195199309451392112029325567964865197877187924376823341620891513 \backslash\) \(\left.520128000000000000000000000000) \mathrm{e}^{-a x}\right)\)

Problem 12: Result more than twice size of optimal antiderivative.
\[
\int \frac{x \mathrm{Ei}_{2}(a x)}{a} \mathrm{~d} x
\]

Optimal(type 4, 29 leaves, 1 step):
\[
\frac{x^{2} \mathrm{Ei}_{2}(a x)}{3 a}-\frac{\mathrm{e}^{-a x}(a x+1)}{3 a^{3}}
\]

Result(type 4, 75 leaves):
\[
\frac{\frac{\left(-\frac{4}{3}+\gamma+\ln (x)+\ln (a)\right) x^{3} a^{3}}{3}+\frac{4 a^{3} x^{3}}{9}+\frac{1}{3}-\frac{\left(-8 a^{2} x^{2}+8 a x+8\right) \mathrm{e}^{-a x}}{24}+\frac{a^{3} x^{3}\left(-\gamma-\ln (a x)-\mathrm{Ei}_{1}(a x)\right)}{3}}{a^{3}}
\]

Problem 13: Result more than twice size of optimal antiderivative.
\[
\int \frac{\mathrm{Ei}_{2}(a x)}{a x^{3}} \mathrm{~d} x
\]

Optimal(type 4, 26 leaves, 1 step):
\[
\frac{\mathrm{Ei}_{3}(a x)}{a x^{2}}-\frac{\mathrm{Ei}_{2}(a x)}{a x^{2}}
\]

Result(type 4, 105 leaves):
\[
a\left(-\frac{1}{2 a^{2} x^{2}}-\frac{\gamma+\ln (x)+\ln (a)}{x a}-\frac{\gamma}{2}+\frac{5}{4}-\frac{\ln (x)}{2}-\frac{\ln (a)}{2}+\frac{-15 a^{2} x^{2}+6}{12 a^{2} x^{2}}-\frac{(6 a x+6) \mathrm{e}^{-a x}}{12 a^{2} x^{2}}-\frac{(6 a x+12)\left(-\gamma-\ln (a x)-\mathrm{Ei}_{1}(a x)\right)}{12 a x}\right)
\]

Problem 14: Result more than twice size of optimal antiderivative.
\[
\int \frac{\mathrm{Ei}_{2}(a x)}{a x^{5}} \mathrm{~d} x
\]

Optimal(type 4, 27 leaves, 1 step):
\[
\frac{\mathrm{Ei}_{5}(a x)}{3 a x^{4}}-\frac{\mathrm{Ei}_{2}(a x)}{3 a x^{4}}
\]

Result (type 4, 164 leaves):
\(a^{3}\left(-\frac{1}{4 a^{4} x^{4}}-\frac{-\frac{2}{3}+\gamma+\ln (x)+\ln (a)}{3 x^{3} a^{3}}+\frac{1}{4 a^{2} x^{2}}-\frac{1}{12 a x}+\frac{29}{864}-\frac{\gamma}{72}-\frac{\ln (x)}{72}-\frac{\ln (a)}{72}+\frac{-145 a^{4} x^{4}+360 a^{3} x^{3}-1080 a^{2} x^{2}-960 a x+1080}{4320 a^{4} x^{4}}\right.\)
\[
\left.-\frac{\left(20 a^{3} x^{3}-20 a^{2} x^{2}+40 a x+360\right) \mathrm{e}^{-a x}}{1440 a^{4} x^{4}}-\frac{\left(20 a^{3} x^{3}+480\right)\left(-\gamma-\ln (a x)-\mathrm{Ei}_{1}(a x)\right)}{1440 a^{3} x^{3}}\right)
\]

Problem 15: Result more than twice size of optimal antiderivative.
\[
\int \frac{\mathrm{Ei}_{3}(a x)}{x a^{2}} \mathrm{~d} x
\]

Optimal(type 4, 21 leaves, 1 step):
\[
\frac{\mathrm{Ei}_{3}(a x)}{2 a^{2}}-\frac{\mathrm{Ei}_{1}(a x)}{2 a^{2}}
\]

Result(type 4, 81 leaves):
\[
\frac{\frac{\gamma}{2}+\frac{\ln (x)}{2}+\frac{\ln (a)}{2}-\frac{(-2+\gamma+\ln (x)+\ln (a)) x^{2} a^{2}}{4}-\frac{a^{2} x^{2}}{2}+\frac{(-9 a x+9) \mathrm{e}^{-a x}}{36}+\frac{\left(-9 a^{2} x^{2}+18\right)\left(-\gamma-\ln (a x)-\mathrm{Ei}_{1}(a x)\right)}{36}}{a^{2}}
\]

Problem 17: Result more than twice size of optimal antiderivative.
\[
\int \frac{\mathrm{Ei}_{3}(a x)}{a^{2} x^{5}} \mathrm{~d} x
\]

Optimal(type 4, 27 leaves, 1 step):
\[
\frac{\mathrm{Ei}_{5}(a x)}{2 a^{2} x^{4}}-\frac{\mathrm{Ei}_{3}(a x)}{2 a^{2} x^{4}}
\]

Result(type 4, 164 leaves):
\(a^{2}\left(-\frac{1}{8 a^{4} x^{4}}+\frac{1}{3 a^{3} x^{3}}+\frac{-1+\gamma+\ln (x)+\ln (a)}{4 x^{2} a^{2}}-\frac{1}{6 a x}+\frac{31}{576}-\frac{\gamma}{48}-\frac{\ln (x)}{48}-\frac{\ln (a)}{48}+\frac{-155 a^{4} x^{4}+480 a^{3} x^{3}+720 a^{2} x^{2}-960 a x+360}{2880 a^{4} x^{4}}\right.\)
\[
\left.-\frac{\left(15 a^{3} x^{3}-15 a^{2} x^{2}-150 a x+90\right) \mathrm{e}^{-a x}}{720 a^{4} x^{4}}+\frac{\left(-15 a^{2} x^{2}+180\right)\left(-\gamma-\ln (a x)-\mathrm{Ei}_{1}(a x)\right)}{720 a^{2} x^{2}}\right)
\]

Problem 19: Result more than twice size of optimal antiderivative.
\[
\int \frac{\mathrm{Ei}_{4}(a x)}{a^{3} x^{7}} \mathrm{~d} x
\]

Optimal(type 4, 27 leaves, 1 step):
\[
\frac{\mathrm{Ei}_{7}(a x)}{3 a^{3} x^{6}}-\frac{\mathrm{Ei}_{4}(a x)}{3 a^{3} x^{6}}
\]

Result(type 4, 212 leaves):
\(a^{3}\left(-\frac{1}{18 a^{6} x^{6}}+\frac{1}{10 x^{5} a^{5}}-\frac{1}{8 a^{4} x^{4}}-\frac{-\frac{3}{2}+\gamma+\ln (x)+\ln (a)}{18 x^{3} a^{3}}+\frac{1}{48 a^{2} x^{2}}-\frac{1}{240 a x}+\frac{167}{129600}-\frac{\gamma}{2160}-\frac{\ln (x)}{2160}-\frac{\ln (a)}{2160}\right.\)
\(+\frac{-1169 x^{6} a^{6}+3780 x^{5} a^{5}-18900 a^{4} x^{4}-75600 a^{3} x^{3}+113400 a^{2} x^{2}-90720 a x+50400}{907200 a^{6} x^{6}}\)
\(\left.-\frac{\left(28 x^{5} a^{5}-28 a^{4} x^{4}+56 a^{3} x^{3}+3192 a^{2} x^{2}-2688 a x+3360\right) \mathrm{e}^{-a x}}{60480 a^{6} x^{6}}-\frac{\left(28 a^{3} x^{3}+3360\right)\left(-\gamma-\ln (a x)-\operatorname{Ei}_{1}(a x)\right)}{60480 a^{3} x^{3}}\right)\)

Problem 20: Unable to integrate problem.

\section*{\(\int \frac{\sqrt{\pi} \operatorname{erfc}(\sqrt{a x})}{x} \mathrm{~d} x\)}

Optimal(type 5, 25 leaves, 1 step):
\[
\ln (x) \sqrt{\pi}-4 \text { HypergeometricPFQ }\left(\left[\frac{1}{2}, \frac{1}{2}\right],\left[\frac{3}{2}, \frac{3}{2}\right],-a x\right) \sqrt{a x}
\]

Result(type 8, 15 leaves):
\[
\int \frac{\sqrt{\pi} \operatorname{erfc}(\sqrt{a x})}{x} \mathrm{~d} x
\]

Problem 24: Result unnecessarily involves higher level functions.
\[
\int \frac{(d x)^{m} \mathrm{Ei}_{2}(b x)}{b x} \mathrm{~d} x
\]

Optimal(type 4, 55 leaves, 1 step):
\[
\frac{(d x)^{1+m} \mathrm{Ei}_{2}(b x)}{b x d(1+m)}-\frac{(d x)^{m} \Gamma(m, b x)}{b(1+m)(b x)^{m}}
\]

Result(type 5, 96 leaves):
\[
b^{-1-m}(d x)^{m} x^{-m}\left(\frac{x^{m} b^{m}}{m}+\frac{(\Psi(1+m)+\gamma-1-\Psi(2+m)+\ln (x)+\ln (b)) x^{1+m} b^{1+m}}{1+m}-\frac{x^{2+m} b^{2+m} \operatorname{hypergeom}([1,1,2+m],[2,3,3+m],-b x)}{2(2+m)}\right)
\]

Problem 25: Result unnecessarily involves higher level functions and more than twice size of optimal antiderivative.
\[
\int \frac{(d x)^{m} \mathrm{Ei}_{3}(b x)}{b^{2} x^{2}} \mathrm{~d} x
\]

Optimal(type 4, 57 leaves, 1 step):
\[
\frac{(d x)^{1+m} \mathrm{Ei}_{3}(b x)}{b^{2} x^{2} d(1+m)}-\frac{(d x)^{m} \Gamma(-1+m, b x)}{b(1+m)(b x)^{m}}
\]

Result(type 5, 115 leaves):
\(b^{-1-m}(d x)^{m} x^{-m}\left(\frac{x^{-1+m} b^{-1+m}}{2(-1+m)}-\frac{x^{m} b^{m}}{m}-\frac{\left(\Psi(1+m)+\gamma-\frac{3}{2}-\Psi(2+m)+\ln (x)+\ln (b)\right) x^{1+m} b^{1+m}}{2(1+m)}\right.\)
\[
\left.+\frac{x^{2+m} b^{2+m} \text { hypergeom }([1,1,2+m],[2,4,3+m],-b x)}{6(2+m)}\right)
\]

Problem 26: Unable to integrate problem.
\[
\int \frac{\Gamma(n, a x)}{x^{2}} \mathrm{~d} x
\]

Optimal(type 4, 20 leaves, 1 step):
\[
a \Gamma(-1+n, a x)-\frac{\Gamma(n, a x)}{x}
\]

Result(type 9, 147 leaves):
\(a\left(-\frac{\pi \csc (\pi n)}{\Gamma(1-n) x a}-\frac{\pi \csc (\pi n)}{\Gamma(2-n)}-\frac{x^{-1+n} a^{-1+n}(a x-n+1)(a x)^{-\frac{n}{2}} \mathrm{e}^{-\frac{a x}{2}} \operatorname{WhittakerM}\left(\frac{n}{2}, \frac{n}{2}+\frac{1}{2}, a x\right)}{n(-1+n)(1+n)}\right.\)
\(\left.-\frac{x^{-2+n} a^{-2+n}(a x+1)(a x)^{-\frac{n}{2}} \mathrm{e}^{-\frac{a x}{2}} \operatorname{WhittakerM}\left(\frac{n}{2}+1, \frac{n}{2}+\frac{1}{2}, a x\right)}{n(-1+n)}\right)\)

Problem 27: Result unnecessarily involves higher level functions and more than twice size of optimal antiderivative.
\[
\int \frac{\Gamma(n, a x)}{x^{3}} \mathrm{~d} x
\]

Optimal(type 4, 23 leaves, 1 step):
\[
\frac{a^{2} \Gamma(-2+n, a x)}{2}-\frac{\Gamma(n, a x)}{2 x^{2}}
\]

Result(type 5, 78 leaves):
\[
a^{2}\left(-\frac{\pi \csc (\pi n)}{2 \Gamma(1-n) x^{2} a^{2}}+\frac{\pi \csc (\pi n)}{2 \Gamma(3-n)}-\frac{x^{-2+n} a^{-2+n} \operatorname{hypergeom}([n,-2+n],[1+n,-1+n],-a x)}{n(-2+n)}\right)
\]

Problem 28: Result unnecessarily involves higher level functions and more than twice size of optimal antiderivative.
\[
\int \frac{\Gamma(n, 2 x)}{x^{3}} \mathrm{~d} x
\]

Optimal(type 4, 20 leaves, 1 step):
\[
2 \Gamma(-2+n, 2 x)-\frac{\Gamma(n, 2 x)}{2 x^{2}}
\]

Result(type 5, 68 leaves):
\[
-\frac{\pi \csc (\pi n)}{2 \Gamma(1-n) x^{2}}+\frac{2 \pi \csc (\pi n)}{\Gamma(3-n)}-\frac{x^{-2+n} 2^{n} \text { hypergeom }([n,-2+n],[1+n,-1+n],-2 x)}{n(-2+n)}
\]

Problem 29: Result unnecessarily involves higher level functions and more than twice size of optimal antiderivative.
\[
\int \frac{\Gamma(n, 2 x)}{x^{4}} \mathrm{~d} x
\]

Optimal (type 4, 20 leaves, 1 step):
\[
\frac{8 \Gamma(-3+n, 2 x)}{3}-\frac{\Gamma(n, 2 x)}{3 x^{3}}
\]

Result(type 5, 68 leaves):
\[
-\frac{\pi \csc (\pi n)}{3 \Gamma(1-n) x^{3}}-\frac{8 \pi \csc (\pi n)}{3 \Gamma(4-n)}-\frac{x^{-3+n} 2^{n} \text { hypergeom }([n,-3+n],[1+n,-2+n],-2 x)}{n(-3+n)}
\]

Problem 30: Result more than twice size of optimal antiderivative.
\[
\int(d x+c)^{3} \mathrm{Ei}_{1}(b x+a) \mathrm{d} x
\]

Optimal(type 4, 259 leaves, 8 steps):
\[
\begin{aligned}
& -\frac{(-a d+b c)^{3} \mathrm{e}^{-b x-a}}{4 b^{4}}-\frac{(-a d+b c)^{4} \mathrm{Ei}_{1}(b x+a)}{4 b^{4} d}+\frac{(d x+c)^{4} \mathrm{Ei}_{1}(b x+a)}{4 d}-\frac{d(-a d+b c)^{2} \mathrm{e}^{-a+\frac{b c}{d}} \mathrm{e}^{-\frac{b(d x+c)}{d}}\left(1+\frac{b(d x+c)}{d}\right)}{4 b^{4}} \\
& -\frac{d^{2}(-a d+b c) \mathrm{e}^{-a+\frac{b c}{d}} \mathrm{e}^{-\frac{b(d x+c)}{d}}\left(1+\frac{b(d x+c)}{d}+\frac{b^{2}(d x+c)^{2}}{2 d^{2}}\right)}{2 b^{4}} \\
& -\frac{3 d^{3} \mathrm{e}^{-a+\frac{b c}{d}} \mathrm{e}^{-\frac{b(d x+c)}{d}}\left(1+\frac{b(d x+c)}{d}+\frac{b^{2}(d x+c)^{2}}{2 d^{2}}+\frac{b^{3}(d x+c)^{3}}{6 d^{3}}\right)}{2 b^{4}}
\end{aligned}
\]

Result(type 4, 765 leaves):
\[
\begin{aligned}
& \frac{1}{b}\left(\frac{d^{3} \mathrm{Ei}_{1}(b x+a)(b x+a)^{4}}{4 b^{3}}-\frac{d^{3} \mathrm{Ei}_{1}(b x+a)(b x+a)^{3} a}{b^{3}}+\frac{d^{2} \mathrm{Ei}_{1}(b x+a)(b x+a)^{3} c}{b^{2}}+\frac{3 d^{3} \mathrm{Ei}_{1}(b x+a)(b x+a)^{2} a^{2}}{2 b^{3}}\right. \\
&-\frac{3 d^{2} \mathrm{Ei}_{1}(b x+a)(b x+a)^{2} a c}{b^{2}}+\frac{3 d \mathrm{Ei}_{1}(b x+a)(b x+a)^{2} c^{2}}{2 b}-\frac{d^{3} \mathrm{Ei}_{1}(b x+a)(b x+a) a^{3}}{b^{3}}+\frac{3 d^{2} \mathrm{Ei}_{1}(b x+a)(b x+a) a^{2} c}{b^{2}} \\
&-\frac{3 d \mathrm{Ei}_{1}(b x+a)(b x+a) a c^{2}}{b}+\mathrm{Ei}_{1}(b x+a)(b x+a) c^{3}+\frac{d^{3} \mathrm{Ei}_{1}(b x+a) a^{4}}{4 b^{3}}-\frac{d^{2} \mathrm{Ei}_{1}(b x+a) a^{3} c}{b^{2}}+\frac{3 d \mathrm{Ei}_{1}(b x+a) a^{2} c^{2}}{2 b}-\mathrm{Ei}_{1}(b x+a) a c^{3} \\
&+\frac{b \mathrm{Ei}_{1}(b x+a) c^{4}}{4 d}+\frac{1}{4 b^{3} d}\left(d^{4}\left(-(b x+a)^{3} \mathrm{e}^{-b x-a}-3(b x+a)^{2} \mathrm{e}^{-b x-a}-6(b x+a) \mathrm{e}^{-b x-a}-6 \mathrm{e}^{-b x-a}\right)-a^{4} d^{4} \mathrm{Ei}_{1}(b x+a)-b^{4} c^{4} \mathrm{Ei}_{1}(b x\right. \\
&+a)+4 \mathrm{e}^{-b x-a} a^{3} d^{4}+6 a^{2} d^{4}\left(-(b x+a) \mathrm{e}^{-b x-a}-\mathrm{e}^{-b x-a}\right)+4 a d^{4}\left((b x+a)^{2} \mathrm{e}^{-b x-a}+2(b x+a) \mathrm{e}^{-b x-a}+2 \mathrm{e}^{-b x-a}\right)-4 \mathrm{e}^{-b x-a} b^{3} c^{3} d
\end{aligned}
\]
\[
\begin{aligned}
& +6 b^{2} c^{2} d^{2}\left(-(b x+a) \mathrm{e}^{-b x-a}-\mathrm{e}^{-b x-a}\right)-4 b c d^{3}\left((b x+a)^{2} \mathrm{e}^{-b x-a}+2(b x+a) \mathrm{e}^{-b x-a}+2 \mathrm{e}^{-b x-a}\right)+12 \mathrm{e}^{-b x-a} a b^{2} c^{2} d^{2}-12 \mathrm{e}^{-b x-a} a^{2} b c d^{3} \\
& \left.\left.+4 a b^{3} c^{3} d \mathrm{Ei}_{1}(b x+a)-6 a^{2} b^{2} c^{2} d^{2} \mathrm{Ei}_{1}(b x+a)+4 a^{3} b c d^{3} \mathrm{Ei}_{1}(b x+a)-12 a b c d^{3}\left(-(b x+a) \mathrm{e}^{-b x-a}-\mathrm{e}^{-b x-a}\right)\right)\right)
\end{aligned}
\]

Problem 37: Result more than twice size of optimal antiderivative.
\[
\int \frac{\mathrm{e}^{-b x-a}(b x+a+1)}{(d x+c)^{2}} \mathrm{~d} x
\]

Optimal(type 4, 79 leaves, 5 steps):
\[
\frac{b \mathrm{e}^{-b x-a}}{d^{2}}-\frac{b(-a d+b c) \mathrm{e}^{-a+\frac{b c}{d}} \operatorname{Ei}_{1}\left(\frac{b(d x+c)}{d}\right)}{d^{3}}-\frac{\mathrm{e}^{-b x-a}(b x+a+1)}{d(d x+c)}
\]

Result(type 4, 209 leaves):
\(-\frac{1}{b}\left(\frac{b^{2}\left(-\frac{\mathrm{e}^{-b x-a}}{-b x-a+\frac{a d-b c}{d}}-\mathrm{e}^{-\frac{a d-b c}{d}} \mathrm{Ei}_{1}\left(b x+a-\frac{a d-b c}{d}\right)\right.}{d^{2}}\right.\)
\(\left.+\frac{(a d-b c) b^{2}\left(-\frac{\mathrm{e}^{-b x-a}}{-b x-a+\frac{a d-b c}{d}}-\mathrm{e}^{-\frac{a d-b c}{d}} \operatorname{Ei}_{1}\left(b x+a-\frac{a d-b c}{d}\right)\right.}{d^{3}}+\frac{b^{2} \mathrm{e}^{-\frac{a d-b c}{d}} \operatorname{Ei}_{1}\left(b x+a-\frac{a d-b c}{d}\right)}{d^{2}}\right)\)

Problem 38: Result more than twice size of optimal antiderivative.
\[
\int \frac{\mathrm{e}^{-b x-a}(b x+a+1)}{(d x+c)^{4}} \mathrm{~d} x
\]

Optimal(type 4, 110 leaves, 5 steps):
\[
-\frac{b(-a d+b c) \mathrm{e}^{-a+\frac{b c}{d}} \mathrm{Ei}_{3}\left(\frac{b(d x+c)}{d}\right)}{3(d x+c)^{2} d^{3}}+\frac{b^{2} \mathrm{e}^{-a+\frac{b c}{d}} \mathrm{Ei}_{2}\left(\frac{b(d x+c)}{d}\right)}{3(d x+c) d^{3}}-\frac{\mathrm{e}^{-b x-a}(b x+a+1)}{3 d(d x+c)^{3}}
\]

Result(type 4, 411 leaves):
\(-\frac{1}{b}\left(\frac{b^{4}\left(-\frac{\mathrm{e}^{-b x-a}}{3\left(-b x-a+\frac{a d-b c}{d}\right)^{3}}-\frac{\mathrm{e}^{-b x-a}}{6\left(-b x-a+\frac{a d-b c}{d}\right)^{2}}-\frac{\mathrm{e}^{-b x-a}}{6\left(-b x-a+\frac{a d-b c}{d}\right)}-\frac{\mathrm{e}^{-\frac{a d-b c}{d}} \mathrm{Ei}_{1}\left(b x+a-\frac{a d-b c}{d}\right)}{6}\right)}{d^{4}}\right.\)
\[
\begin{aligned}
& +\frac{1}{d^{5}}\left(b ^ { 4 } ( a d - b c ) \left(-\frac{\mathrm{e}^{-b x-a}}{3\left(-b x-a+\frac{a d-b c}{d}\right)^{3}}-\frac{\mathrm{e}^{-b x-a}}{6\left(-b x-a+\frac{a d-b c}{d}\right)^{2}}-\frac{\mathrm{e}^{-b x-a}}{6\left(-b x-a+\frac{a d-b c}{d}\right)}\right.\right. \\
& \left.\left.-\frac{\mathrm{e}^{-\frac{a d-b c}{d}} \operatorname{Ei}_{1}\left(b x+a-\frac{a d-b c}{d}\right)}{6}\right)\right) \\
& b^{4}\left(-\frac{\mathrm{e}^{-b x-a}}{2\left(-b x-a+\frac{a d-b c}{d}\right)^{2}}-\frac{2\left(-b x-a+\frac{a d-b c}{d}\right)}{2\left(\frac{\mathrm{e}^{-b x-a}}{d}\right)}\right. \\
& \left.-\frac{\mathrm{e}^{-\frac{a d-b c}{d}} \mathrm{Ei}_{1}\left(b x+a-\frac{a d-b c}{d}\right)}{2}\right)
\end{aligned}
\]

Problem 40: Result more than twice size of optimal antiderivative.
\[
\int \frac{2 \mathrm{e}^{-b x-a}\left(1+b x+a+\frac{(b x+a)^{2}}{2}\right)}{(d x+c)^{2}} \mathrm{~d} x
\]

Optimal(type 4, 118 leaves, 6 steps):
\[
-\frac{b(-a d+b c) \mathrm{e}^{-b x-a}}{d^{3}}+\frac{b(-a d+b c)^{2} \mathrm{e}^{-a+\frac{b c}{d}} \operatorname{Ei}_{1}\left(\frac{b(d x+c)}{d}\right)}{d^{4}}+\frac{b \mathrm{e}^{-b x-a}(b x+a+1)}{d^{2}}-\frac{2 \mathrm{e}^{-b x-a}\left(1+b x+a+\frac{(b x+a)^{2}}{2}\right)}{d(d x+c)}
\]

Result(type 4, 376 leaves):
\(-\frac{1}{b}\left(\frac{b^{2} \mathrm{e}^{-b x-a}}{d^{2}}+\frac{\left(a^{2} d^{2}-2 a b c d+c^{2} b^{2}\right) b^{2}\left(-\frac{\mathrm{e}^{-b x-a}}{-b x-a+\frac{a d-b c}{d}}-\mathrm{e}^{-\frac{a d-b c}{d}} \operatorname{Ei}_{1}\left(b x+a-\frac{a d-b c}{d}\right)\right.}{d^{4}}\right)\)
\[
\begin{aligned}
& \left.+\frac{2(a d-b c) b^{2} \mathrm{e}^{-\frac{a d-b c}{d}} \operatorname{Ei}_{1}\left(b x+a-\frac{a d-b c}{d}\right)}{d^{3}}+\frac{2 b^{2}\left(-\frac{\mathrm{e}^{-b x-a}}{-b x-a+\frac{a d-b c}{d}}-\mathrm{e}^{-\frac{a d-b c}{d}} \mathrm{Ei}_{1}\left(b x+a-\frac{a d-b c}{d}\right)\right.}{d^{3}}+\mathrm{e}^{-\frac{a d-b c}{d}} \operatorname{Ei}_{1}\left(b x+a-\frac{a d-b c}{d}\right)\right) \\
& +\frac{2(a d-b c) b^{2}\left(-\frac{\mathrm{e}^{-b x-a}}{-b x-a+\frac{a d-b c}{d}}\right.}{\left.+\frac{2 b^{2} \mathrm{e}^{-\frac{a d-b c}{d}} \mathrm{Ei}_{1}\left(b x+a-\frac{a d-b c}{d}\right)}{d^{2}}\right)}
\end{aligned}
\]

Problem 41: Unable to integrate problem.
\[
\int \frac{\mathrm{Ei}_{2}(b x+a)}{(b x+a)(d x+c)^{2}} \mathrm{~d} x
\]

Optimal(type 4, 111 leaves, 6 steps):
\[
\frac{b \mathrm{Ei}_{2}(b x+a)}{(b x+a) d(-a d+b c)}-\frac{\mathrm{Ei}_{2}(b x+a)}{(b x+a) d(d x+c)}-\frac{b \mathrm{Ei}_{1}(b x+a)}{(-a d+b c)^{2}}+\frac{b \mathrm{e}^{-a+\frac{b c}{d}} \mathrm{Ei}_{1}\left(\frac{b(d x+c)}{d}\right)}{(-a d+b c)^{2}}
\]

Result(type 8, 24 leaves):
\[
\int \frac{\mathrm{Ei}_{2}(b x+a)}{(b x+a)(d x+c)^{2}} \mathrm{~d} x
\]

Problem 42: Unable to integrate problem.
\[
\int \frac{(d x+c) \mathrm{Ei}_{3}(b x+a)}{(b x+a)^{2}} \mathrm{~d} x
\]

Optimal(type 4, 99 leaves, 6 steps):
\[
-\frac{(-a d+b c)^{2} \mathrm{Ei}_{3}(b x+a)}{2(b x+a)^{2} b^{2} d}+\frac{(d x+c)^{2} \mathrm{Ei}_{3}(b x+a)}{2(b x+a)^{2} d}-\frac{(-a d+b c) \mathrm{Ei}_{2}(b x+a)}{(b x+a) b^{2}}-\frac{d \mathrm{Ei}_{1}(b x+a)}{2 b^{2}}
\]

Result(type 8, 22 leaves):
\[
\int \frac{(d x+c) \mathrm{Ei}_{3}(b x+a)}{(b x+a)^{2}} \mathrm{~d} x
\]

Problem 43: Unable to integrate problem.
\[
\int \frac{\mathrm{Ei}_{3}(b x+a)}{(b x+a)^{2}} \mathrm{~d} x
\]

Optimal(type 4, 38 leaves, 1 step):
\[
\frac{\mathrm{Ei}_{3}(b x+a)}{(b x+a) b}-\frac{\mathrm{Ei}_{2}(b x+a)}{(b x+a) b}
\]

Result(type 8, 17 leaves):
\[
\int \frac{\mathrm{Ei}_{3}(b x+a)}{(b x+a)^{2}} \mathrm{~d} x
\]

Problem 44: Unable to integrate problem.
\[
\int \frac{\mathrm{Ei}_{3}(b x+a)}{(b x+a)^{2}(d x+c)^{4}} \mathrm{~d} x
\]

Optimal(type 4, 240 leaves, 9 steps):
\[
\begin{aligned}
& \frac{b^{3} \mathrm{Ei}_{3}(b x+a)}{3(b x+a)^{2} d(-a d+b c)^{3}}-\frac{\mathrm{Ei}_{3}(b x+a)}{3(b x+a)^{2} d(d x+c)^{3}}-\frac{b \mathrm{e}^{-a+\frac{b c}{d}} d \mathrm{Ei}_{3}\left(\frac{b(d x+c)}{d}\right)}{3(d x+c)^{2}(-a d+b c)^{3}}-\frac{b^{3} \mathrm{Ei}_{2}(b x+a)}{(b x+a)(-a d+b c)^{4}}-\frac{b^{2} \mathrm{e}^{-a+\frac{b c}{d}} d \mathrm{Ei}_{2}\left(\frac{b(d x+c)}{d}\right)}{(d x+c)(-a d+b c)^{4}} \\
& +\frac{2 b^{3} d \mathrm{Ei}_{1}(b x+a)}{(-a d+b c)^{5}}-\frac{2 b^{3} d \mathrm{e}^{-a+\frac{b c}{d}} \mathrm{Ei}_{1}\left(\frac{b(d x+c)}{d}\right)}{(-a d+b c)^{5}}
\end{aligned}
\]

Result(type 8, 24 leaves):
\[
\int \frac{\mathrm{Ei}_{3}(b x+a)}{(b x+a)^{2}(d x+c)^{4}} \mathrm{~d} x
\]

Problem 45: Unable to integrate problem.
\[
\int \frac{(d x+c) \mathrm{Ei}_{4}(b x+a)}{(b x+a)^{3}} \mathrm{~d} x
\]

Optimal(type 4, 106 leaves, 6 steps):
\[
-\frac{(-a d+b c)^{2} \mathrm{Ei}_{4}(b x+a)}{2(b x+a)^{3} b^{2} d}+\frac{(d x+c)^{2} \mathrm{Ei}_{4}(b x+a)}{2(b x+a)^{3} d}-\frac{(-a d+b c) \mathrm{Ei}_{3}(b x+a)}{(b x+a)^{2} b^{2}}-\frac{d \mathrm{Ei}_{2}(b x+a)}{2(b x+a) b^{2}}
\]

Result(type 8, 22 leaves):
\[
\int \frac{(d x+c) \mathrm{Ei}_{4}(b x+a)}{(b x+a)^{3}} \mathrm{~d} x
\]

Problem 46: Unable to integrate problem.
\[
\int \frac{\mathrm{Ei}_{4}(b x+a)}{(b x+a)^{3}} \mathrm{~d} x
\]

Optimal(type 4, 38 leaves, 1 step):
\[
\frac{\mathrm{Ei}_{4}(b x+a)}{(b x+a)^{2} b}-\frac{\mathrm{Ei}_{3}(b x+a)}{(b x+a)^{2} b}
\]

Result(type 8, 17 leaves):
\[
\int \frac{\mathrm{Ei}_{4}(b x+a)}{(b x+a)^{3}} \mathrm{~d} x
\]

Problem 49: Unable to integrate problem.
\[
\int(d x+c)^{4} \Gamma(n, b x+a) \mathrm{d} x
\]

Optimal(type 4, 163 leaves, 9 steps):
\[
\begin{aligned}
& -\frac{(-a d+b c)^{5} \Gamma(n, b x+a)}{5 b^{5} d}+\frac{(d x+c)^{5} \Gamma(n, b x+a)}{5 d}-\frac{(-a d+b c)^{4} \Gamma(1+n, b x+a)}{b^{5}}-\frac{2 d(-a d+b c)^{3} \Gamma(2+n, b x+a)}{b^{5}} \\
& -\frac{2 d^{2}(-a d+b c)^{2} \Gamma(3+n, b x+a)}{b^{5}}-\frac{d^{3}(-a d+b c) \Gamma(4+n, b x+a)}{b^{5}}-\frac{d^{4} \Gamma(5+n, b x+a)}{5 b^{5}}
\end{aligned}
\]

Result(type 8, 17 leaves):
\[
\int(d x+c)^{4} \Gamma(n, b x+a) \mathrm{d} x
\]

Problem 50: Unable to integrate problem.
\[
\int(d x+c)^{2} \Gamma(n, b x+a) \mathrm{d} x
\]

Optimal(type 4, 109 leaves, 7 steps):
\(-\frac{(-a d+b c)^{3} \Gamma(n, b x+a)}{3 b^{3} d}+\frac{(d x+c)^{3} \Gamma(n, b x+a)}{3 d}-\frac{(-a d+b c)^{2} \Gamma(1+n, b x+a)}{b^{3}}-\frac{d(-a d+b c) \Gamma(2+n, b x+a)}{b^{3}}-\frac{d^{2} \Gamma(3+n, b x+a)}{3 b^{3}}\)
Result(type 8, 17 leaves):
\[
\int(d x+c)^{2} \Gamma(n, b x+a) \mathrm{d} x
\]

Problem 51: Unable to integrate problem.
\(\int x \Gamma\left(p, d\left(a+b \ln \left(c x^{n}\right)\right)\right) \mathrm{d} x\)
Optimal(type 4, 120 leaves, 4 steps):
\[
\frac{x^{2} \Gamma\left(p, d\left(a+b \ln \left(c x^{n}\right)\right)\right)}{2}-\frac{x^{2} \Gamma\left(p,-\frac{(-b d n+2)\left(a+b \ln \left(c x^{n}\right)\right)}{b n}\right)\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)^{p}}{2 \mathrm{e}^{\frac{2 a}{b n}}\left(c x^{n}\right)^{\frac{2}{n}}\left(-\frac{(-b d n+2)\left(a+b \ln \left(c x^{n}\right)\right)}{b n}\right)^{p}}
\]

Result(type 8, 18 leaves):
\[
\int x \Gamma\left(p, d\left(a+b \ln \left(c x^{n}\right)\right)\right) \mathrm{d} x
\]

Problem 52: Unable to integrate problem.
\[
\int \frac{\Gamma\left(p, d\left(a+b \ln \left(c x^{n}\right)\right)\right)}{x^{2}} \mathrm{~d} x
\]

Optimal (type 4, 108 leaves, 4 steps):
\[
-\frac{\Gamma\left(p, d\left(a+b \ln \left(c x^{n}\right)\right)\right)}{x}+\frac{\mathrm{e}^{\frac{a}{b n}}\left(c x^{n}\right)^{\frac{1}{n}} \Gamma\left(p, \frac{(b d n+1)\left(a+b \ln \left(c x^{n}\right)\right)}{b n}\right)\left(d\left(a+b \ln \left(c x^{n}\right)\right)\right)^{p}}{x\left(\frac{(b d n+1)\left(a+b \ln \left(c x^{n}\right)\right)}{b n}\right)^{p}}
\]

Result(type 8, 20 leaves):
\[
\int \frac{\Gamma\left(p, d\left(a+b \ln \left(c x^{n}\right)\right)\right)}{x^{2}} \mathrm{~d} x
\]

Problem 53: Unable to integrate problem.
\[
\int(d x+c) \operatorname{lnGAMMA}(b x+a) \mathrm{d} x
\]

Optimal(type 4, 30 leaves, 2 steps):
\[
-\frac{d \Psi(-3, b x+a)}{b^{2}}+\frac{(d x+c) \Psi(-2, b x+a)}{b}
\]

Result(type 8, 14 leaves):
\[
\int(d x+c) \operatorname{lnGAMMA}(b x+a) \mathrm{d} x
\]

Problem 61: Unable to integrate problem.
\[
\int\left(\frac{\Psi(1, b x+a)}{x^{2}}-\frac{b \Psi(2, b x+a)}{x}\right) \mathrm{d} x
\]

Optimal(type 4, 12 leaves, 2 steps):
\[
-\frac{\Psi(1, b x+a)}{x}
\]

Result(type 8, 27 leaves):
\[
\int\left(\frac{\Psi(1, b x+a)}{x^{2}}-\frac{b \Psi(2, b x+a)}{x}\right) \mathrm{d} x
\]

Problem 62: Unable to integrate problem.
\[
\int\left(\frac{\Psi(n, b x+a)}{x^{2}}-\frac{b \Psi(1+n, b x+a)}{x}\right) \mathrm{d} x
\]

Optimal(type 4, 12 leaves, 2 steps):
\[
-\frac{\Psi(n, b x+a)}{x}
\]

Result(type 8, 29 leaves):
\[
\int\left(\frac{\Psi(n, b x+a)}{x^{2}}-\frac{b \Psi(1+n, b x+a)}{x}\right) \mathrm{d} x
\]

Test results for the 4 problems in "8.7 zeta function.txt"
Problem 1: Unable to integrate problem.
\[
\int x^{2} \Psi(1, b x+a) d x
\]

Optimal(type 4, 38 leaves, 4 steps):
\[
-\frac{2 x \ln \operatorname{GAMMA}(b x+a)}{b^{2}}+\frac{2 \Psi(-2, b x+a)}{b^{3}}+\frac{x^{2} \Psi(b x+a)}{b}
\]

Result(type 8, 13 leaves):
\[
\int x^{2} \Psi(1, b x+a) d x
\]

Problem 3: Unable to integrate problem.
\[
\int\left(\frac{\Psi(1, b x+a)}{x^{2}}-\frac{b \Psi(2, b x+a)}{x}\right) \mathrm{d} x
\]

Optimal(type 4, 12 leaves, 3 steps):
\[
-\frac{\Psi(1, b x+a)}{x}
\]

Result(type 8, 27 leaves):
\[
\int\left(\frac{\Psi(1, b x+a)}{x^{2}}-\frac{b \Psi(2, b x+a)}{x}\right) \mathrm{d} x
\]

Problem 4: Unable to integrate problem.
\[
\int \zeta(0, s, b x+a) \mathrm{d} x
\]

Optimal(type 4, 21 leaves, 1 step):
\[
\frac{\zeta(0,-1+s, b x+a)}{b(1-s)}
\]

Result(type 8, 10 leaves):
\[
\int \zeta(0, s, b x+a) \mathrm{d} x
\]

Test results for the 51 problems in " 8.8 Polylogarithm function.txt"
Problem 13: Result more than twice size of optimal antiderivative.
\[
\int x^{4} \operatorname{polylog}\left(3, a x^{2}\right) \mathrm{d} x
\]

Optimal(type 4, 69 leaves, 6 steps):
\[
\frac{8 x}{125 a^{2}}+\frac{8 x^{3}}{375 a}+\frac{8 x^{5}}{625}-\frac{8 \operatorname{arctanh}(x \sqrt{a})}{125 a^{5 / 2}}-\frac{4 x^{5} \ln \left(-a x^{2}+1\right)}{125}-\frac{2 x^{5} \operatorname{polylog}\left(2, a x^{2}\right)}{25}+\frac{x^{5} \operatorname{polylog}\left(3, a x^{2}\right)}{5}
\]

Result(type 4, 143 leaves):
\[
\begin{aligned}
& -\frac{1}{2 a^{2} \sqrt{-a}}\left(\frac{2 x(-a)^{7 / 2}\left(168 a^{2} x^{4}+280 a x^{2}+840\right)}{13125 a^{3}}+\frac{8 x(-a)^{7 / 2}\left(\ln \left(1-\sqrt{a x^{2}}\right)-\ln \left(1+\sqrt{a x^{2}}\right)\right)}{125 a^{3} \sqrt{a x^{2}}}-\frac{8 x^{5}(-a)^{7 / 2} \ln \left(-a x^{2}+1\right)}{125 a}\right. \\
& \left.\quad-\frac{4 x^{5}(-a)^{7 / 2} \operatorname{poly} \log \left(2, a x^{2}\right)}{25 a}+\frac{2 x^{5}(-a)^{7 / 2} \operatorname{polylog}\left(3, a x^{2}\right)}{5 a}\right)
\end{aligned}
\]

Problem 14: Result more than twice size of optimal antiderivative.
\(\int \operatorname{polylog}\left(3, a x^{2}\right) \mathrm{d} x\)
Optimal(type 4, 46 leaves, 5 steps):
\[
8 x-4 x \ln \left(-a x^{2}+1\right)-2 x \operatorname{polylog}\left(2, a x^{2}\right)+x \operatorname{polylog}\left(3, a x^{2}\right)-\frac{8 \operatorname{arctanh}(x \sqrt{a})}{\sqrt{a}}
\]

Result(type 4, 118 leaves):
\[
\begin{aligned}
& -\frac{1}{2 \sqrt{-a}}\left(\frac{16 x(-a)^{3 / 2}}{a}+\frac{8 x(-a)^{3 / 2}\left(\ln \left(1-\sqrt{a x^{2}}\right)-\ln \left(1+\sqrt{a x^{2}}\right)\right)}{a \sqrt{a x^{2}}}-\frac{8 x(-a)^{3 / 2} \ln \left(-a x^{2}+1\right)}{a}-\frac{4 x(-a)^{3 / 2} \operatorname{polylog}\left(2, a x^{2}\right)}{a}\right. \\
& \left.\quad+\frac{2 x(-a)^{3 / 2} \operatorname{polylog}\left(3, a x^{2}\right)}{a}\right)
\end{aligned}
\]

Problem 29: Unable to integrate problem.
\[
\int\left(\operatorname{polylog}\left(-\frac{3}{2}, a x\right)+\operatorname{polylog}\left(-\frac{1}{2}, a x\right)\right) \mathrm{d} x
\]

Optimal(type 4, 7 leaves, 2 steps):
\[
x \text { polylog }\left(-\frac{1}{2}, a x\right)
\]

Result (type 8, 13 leaves):
\[
\int\left(\operatorname{polylog}\left(-\frac{3}{2}, a x\right)+\operatorname{polylog}\left(-\frac{1}{2}, a x\right)\right) \mathrm{d} x
\]

Problem 39: Unable to integrate problem.
\[
\int x^{2} \operatorname{polylog}(3, c(b x+a)) \mathrm{d} x
\]

Optimal(type 4, 313 leaves, 33 steps):
\[
\begin{aligned}
& \frac{11 a^{2} x}{18 b^{2}}-\frac{5 a(-c a+1) x}{36 c b^{2}}+\frac{(-c a+1)^{2} x}{27 c^{2} b^{2}}-\frac{5 a x^{2}}{72 b}+\frac{(-c a+1) x^{2}}{54 b c}+\frac{x^{3}}{81}-\frac{5 a(-c a+1)^{2} \ln (-b c x-c a+1)}{36 b^{3} c^{2}}+\frac{(-c a+1)^{3} \ln (-b c x-c a+1)}{27 b^{3} c^{3}} \\
& +\frac{5 a x^{2} \ln (-b c x-c a+1)}{36 b}-\frac{x^{3} \ln (-b c x-c a+1)}{27}+\frac{11 a^{2}(-b c x-c a+1) \ln (-b c x-c a+1)}{18 b^{3} c}-\frac{11 a^{3} \operatorname{polylog}(2, c(b x+a))}{18 b^{3}} \\
& \quad-\frac{a^{2} x \operatorname{polylog}(2, c(b x+a))}{3 b^{2}}+\frac{a x^{2} \operatorname{poly} \log (2, c(b x+a))}{6 b}-\frac{x^{3} \operatorname{polylog}(2, c(b x+a))}{9}+\frac{2 a^{3} \operatorname{poly} \log (3, c(b x+a))}{3 b^{3}} \\
& \\
& -\frac{\left(-b^{3} x^{3}+a^{3}\right) \operatorname{polylog}(3, c(b x+a))}{3 b^{3}}
\end{aligned}
\]

Result(type 8, 15 leaves):
\[
\int x^{2} \operatorname{poly} \log (3, c(b x+a)) \mathrm{d} x
\]

Problem 40: Unable to integrate problem.
\[
\int \operatorname{polylog}(3, c(b x+a)) \mathrm{d} x
\]

Optimal(type 4, 84 leaves, 9 steps):

Result(type 8, 11 leaves):
\[
\int \operatorname{poly} \log (3, c(b x+a)) \mathrm{d} x
\]

Problem 42: Unable to integrate problem.
\[
\int \frac{\operatorname{polylog}(2, x)}{(-1+x) x} \mathrm{~d} x
\]

Optimal(type 4, 51 leaves, 8 steps):
\(\ln (1-x)^{2} \ln (x)+2 \ln (1-x)\) polylog\((2,1-x)+\ln (1-x)\) polylog \((2, x)-2\) polylog \((3,1-x)-\operatorname{poly} \log (3, x)\)
Result(type 8, 14 leaves):
\[
\int \frac{\operatorname{poly} \log (2, x)}{(-1+x) x} \mathrm{~d} x
\]

Problem 43: Unable to integrate problem.
\[
\int-\frac{\operatorname{poly} \log (2, x)}{(1-x) x} \mathrm{~d} x
\]

Optimal(type 4, 51 leaves, 8 steps):
\(\ln (1-x)^{2} \ln (x)+2 \ln (1-x)\) polylog\((2,1-x)+\ln (1-x)\) polylog \((2, x)-2\) polylog \((3,1-x)-\operatorname{poly} \log (3, x)\)
Result(type 8, 17 leaves):
\[
\int-\frac{\operatorname{polylog}(2, x)}{(1-x) x} \mathrm{~d} x
\]

Problem 44: Unable to integrate problem.
\[
\int-\frac{\ln \left(1-e\left(\frac{b x+a}{d x+c}\right)^{n}\right)}{(b x+a)(d x+c)} \mathrm{d} x
\]

Optimal(type 4, 33 leaves, 1 step):
\[
\frac{\operatorname{polylog}\left(2, e\left(\frac{b x+a}{d x+c}\right)^{n}\right)}{(-a d+b c) n}
\]

Result(type 8, 39 leaves):
\[
\int-\frac{\ln \left(1-e\left(\frac{b x+a}{d x+c}\right)^{n}\right)}{(b x+a)(d x+c)} \mathrm{d} x
\]

Problem 46: Unable to integrate problem.
\[
\int x^{3} \operatorname{polylog}\left(n, d\left(F^{c(b x+a)}\right)^{p}\right) \mathrm{d} x
\]

Optimal(type 4, 135 leaves, 5 steps):
\(\frac{x^{3} \operatorname{poly} \log \left(1+n, d\left(F^{c(b x+a)}\right)^{p}\right)}{b c p \ln (F)}-\frac{3 x^{2} \operatorname{polylog}\left(2+n, d\left(F^{c(b x+a)}\right)^{p}\right)}{b^{2} c^{2} p^{2} \ln (F)^{2}}+\frac{6 x \operatorname{poly} \log \left(3+n, d\left(F^{c(b x+a)}\right)^{p}\right)}{b^{3} c^{3} p^{3} \ln (F)^{3}}-\frac{6 \operatorname{poly} \log \left(4+n, d\left(F^{c(b x+a)}\right)^{p}\right)}{b^{4} c^{4} p^{4} \ln (F)^{4}}\)

Result(type 8, 21 leaves):
\[
\int x^{3} \operatorname{polylog}\left(n, d\left(F^{c(b x+a)}\right)^{p}\right) \mathrm{d} x
\]

Problem 48: Unable to integrate problem.
\[
\int \frac{\ln (-c x+1) \operatorname{polylog}(2, c x)}{x^{3}} \mathrm{~d} x
\]

Optimal(type 4, 175 leaves, 23 steps):
\(-c^{2} \ln (x)+c^{2} \ln (-c x+1)-\frac{c \ln (-c x+1)}{x}-\frac{c^{2} \ln (-c x+1)^{2}}{4}+\frac{\ln (-c x+1)^{2}}{4 x^{2}}+\frac{c^{2} \ln (c x) \ln (-c x+1)^{2}}{2}-\frac{c^{2} \text { polylog}(2, c x)}{2}+\frac{c \text { polylog}(2, c x)}{2 x}\)
\(+\frac{c^{2} \ln (-c x+1) \operatorname{poly} \log (2, c x)}{2}-\frac{\ln (-c x+1) \operatorname{poly} \log (2, c x)}{2 x^{2}}+c^{2} \ln (-c x+1) \operatorname{poly} \log (2,-c x+1)-\frac{c^{2} \operatorname{poly} \log (3, c x)}{2}-c^{2} \operatorname{poly} \log (3,-c x+1)\)
Result(type 8, 18 leaves):
\[
\int \frac{\ln (-c x+1) \operatorname{poly} \log (2, c x)}{x^{3}} \mathrm{~d} x
\]

Problem 49: Unable to integrate problem.
\[
\int \frac{(b x+a) \ln (-c x+1) \text { polylog}(2, c x)}{x^{2}} \mathrm{~d} x
\]

Optimal(type 4, 129 leaves, 13 steps):
\(\frac{a(-c x+1) \ln (-c x+1)^{2}}{x}+a c \ln (c x) \ln (-c x+1)^{2}-2 a c\) polylog\((2, c x)+a c \ln (-c x+1) \operatorname{polylog}(2, c x)-\frac{a \ln (-c x+1) \operatorname{poly} \log (2, c x)}{x}\)
\[
-\frac{b \operatorname{poly} \log (2, c x)^{2}}{2}+2 a c \ln (-c x+1) \operatorname{polylog}(2,-c x+1)-a c \operatorname{poly} \log (3, c x)-2 a c \operatorname{poly} \log (3,-c x+1)
\]

Result(type 8, 23 leaves):
\[
\int \frac{(b x+a) \ln (-c x+1) \operatorname{polylog}(2, c x)}{x^{2}} \mathrm{~d} x
\]

Problem 50: Unable to integrate problem.
\[
\int \frac{(b x+a) \ln (-c x+1) \text { polylog }(2, c x)}{x^{4}} \mathrm{~d} x
\]

Optimal(type 4, 410 leaves, 41 steps):
\[
\begin{aligned}
& -\frac{7 a c \ln (-c x+1)}{36 x^{2}}-\frac{b c \ln (-c x+1)}{2 x}-\frac{2 a c^{2} \ln (-c x+1)}{9 x}-\frac{c(2 c a+3 b) \ln (-c x+1)}{6 x}+\frac{c^{2}(2 c a+3 b) \ln (c x) \ln (-c x+1)^{2}}{6} \\
& +\frac{c^{2}(2 c a+3 b) \ln (-c x+1) \operatorname{poly} \log (2, c x)}{6}+\frac{c^{2}(2 c a+3 b) \ln (-c x+1) \operatorname{polylog}(2,-c x+1)}{3}+\frac{7 a c^{2}}{36 x}-\frac{b c^{2} \operatorname{polylog}(2, c x)}{2}
\end{aligned}
\]
\[
\begin{aligned}
& -\frac{2 a c^{3} \operatorname{poly} \log (2, c x)}{9}-\frac{c^{2}(2 c a+3 b) \operatorname{polylog}(3, c x)}{6}-\frac{c^{2}(2 c a+3 b) \operatorname{poly} \log (3,-c x+1)}{3}-\frac{c^{2}(2 c a+3 b) \ln (x)}{6}-\frac{b c^{2} \ln (x)}{2}-\frac{5 a c^{3} \ln (x)}{12} \\
& +\frac{b c^{2} \ln (-c x+1)}{2}+\frac{5 a c^{3} \ln (-c x+1)}{12}+\frac{c^{2}(2 c a+3 b) \ln (-c x+1)}{6}-\frac{b c^{2} \ln (-c x+1)^{2}}{4}-\frac{a c^{3} \ln (-c x+1)^{2}}{9}+\frac{a \ln (-c x+1)^{2}}{9 x^{3}} \\
& +\frac{b \ln (-c x+1)^{2}}{4 x^{2}}-\frac{\left(\frac{2 a}{x^{3}}+\frac{3 b}{x^{2}}\right) \ln (-c x+1) \operatorname{polylog}(2, c x)}{6}+\frac{a c \operatorname{poly} \log (2, c x)}{6 x^{2}}+\frac{c(2 c a+3 b) \operatorname{polylog}(2, c x)}{6 x}
\end{aligned}
\]

Result(type 8, 23 leaves):
\[
\int \frac{(b x+a) \ln (-c x+1) \text { polylog }(2, c x)}{x^{4}} \mathrm{~d} x
\]

Problem 51: Unable to integrate problem.
\[
\int \frac{\left(c x^{2}+b x+a\right) \ln (-d x+1) \operatorname{polylog}(2, d x)}{x^{4}} \mathrm{~d} x
\]

Optimal(type 4, 465 leaves, 43 steps):
\[
\begin{aligned}
& \frac{d(6 c+d(2 a d+3 b)) \ln (-d x+1) \operatorname{poly} \log (2, d x)}{6}+\frac{d(6 c+d(2 a d+3 b)) \ln (-d x+1) \operatorname{polylog}(2,-d x+1)}{3}+\frac{c(-d x+1) \ln (-d x+1)^{2}}{x} \\
& \quad-\frac{7 a d \ln (-d x+1)}{36 x^{2}}-\frac{b d \ln (-d x+1)}{2 x}+\frac{a d \operatorname{poly} \log (2, d x)}{6 x^{2}}+\frac{d(2 a d+3 b) \operatorname{poly} \log (2, d x)}{6 x}-\frac{2 a d^{2} \ln (-d x+1)}{9 x}-\frac{d(2 a d+3 b) \ln (-d x+1)}{6 x} \\
& +\frac{d(6 c+d(2 a d+3 b)) \ln (d x) \ln (-d x+1)^{2}}{6}+\frac{7 a d^{2}}{36 x}-2 c d \operatorname{polylog}(2, d x)-\frac{b d^{2} \operatorname{poly} \log (2, d x)}{2}-\frac{2 a d^{3} \operatorname{polylog}(2, d x)}{9} \\
& \\
& -\frac{d(6 c+d(2 a d+3 b)) \operatorname{polylog}(3, d x)}{6}-\frac{d(6 c+d(2 a d+3 b)) \operatorname{polylog}(3,-d x+1)}{3}-\frac{b d^{2} \ln (x)}{2}-\frac{5 a d^{3} \ln (x)}{12}-\frac{d^{2}(2 a d+3 b) \ln (x)}{6} \\
& +\frac{b d^{2} \ln (-d x+1)}{2}+\frac{5 a d^{3} \ln (-d x+1)}{12}+\frac{d^{2}(2 a d+3 b) \ln (-d x+1)}{6}-\frac{b d^{2} \ln (-d x+1)^{2}}{4}-\frac{a d^{3} \ln (-d x+1)^{2}}{9}+\frac{a \ln (-d x+1)^{2}}{9 x^{3}} \\
& \quad+\frac{b \ln (-d x+1)^{2}}{4 x^{2}}-\frac{\left(\frac{2 a}{x^{3}}+\frac{3 b}{x^{2}}+\frac{6 c}{x}\right) \ln (-d x+1) \operatorname{polylog}(2, d x)}{6}
\end{aligned}
\]

Result(type 8, 28 leaves):
\[
\int \frac{\left(c x^{2}+b x+a\right) \ln (-d x+1) \operatorname{polylog}(2, d x)}{x^{4}} \mathrm{~d} x
\]

Test results for the 107 problems in " 8.9 Product logarithm function.txt"
Problem 5: Result more than twice size of optimal antiderivative.
\[
\int \frac{1}{(c \text { LambertW }(b x+a))^{5 / 2}} \mathrm{~d} x
\]

Optimal(type 4, 70 leaves, 3 steps):
\[
-\frac{2(b x+a)}{3 b(c \operatorname{LambertW}(b x+a))^{5 / 2}}-\frac{10(b x+a)}{3 b c(c \operatorname{LambertW}(b x+a))^{3 / 2}}+\frac{10 \operatorname{erfi}\left(\frac{\sqrt{c \operatorname{LambertW}(b x+a)}}{\sqrt{c}}\right) \sqrt{\pi}}{3 b c^{5 / 2}}
\]

Result(type 4, 159 leaves):
\(\frac{1}{b c^{2}}\left(2\left(-\frac{b x+a}{\sqrt{c \operatorname{LambertW}(b x+a)} \operatorname{LambertW}(b x+a)}+\frac{\sqrt{\pi} \operatorname{erf}\left(\sqrt{-\frac{1}{c}} \sqrt{c \operatorname{LambertW}(b x+a)}\right)}{c \sqrt{-\frac{1}{c}}}+c\right)\right.\)


Problem 6: Result more than twice size of optimal antiderivative.
\[
\int \frac{1}{(c \operatorname{LambertW}(b x+a))^{7 / 2}} \mathrm{~d} x
\]

Optimal(type 4, 93 leaves, 4 steps):
\(-\frac{2(b x+a)}{5 b(c \operatorname{LambertW}(b x+a))^{7 / 2}}-\frac{14(b x+a)}{15 b c(c \operatorname{LambertW}(b x+a))^{5 / 2}}-\frac{28(b x+a)}{15 b c^{2}(c \operatorname{LambertW}(b x+a))^{3 / 2}}+\frac{28 \mathrm{erfi}\left(\frac{\sqrt{c \operatorname{LambertW}(b x+a)}}{\sqrt{c}}\right) \sqrt{\pi}}{15 b c^{7 / 2}}\) Result(type 4, 221 leaves):




Problem 10: Result more than twice size of optimal antiderivative.
\[
\int \frac{1}{(-c \operatorname{LambertW}(b x+a))^{7 / 2}} \mathrm{~d} x
\]

Optimal(type 4, 97 leaves, 4 steps):
\(-\frac{2(b x+a)}{5 b(-c \operatorname{LambertW}(b x+a))^{7 / 2}}+\frac{14(b x+a)}{15 b c(-c \operatorname{LambertW}(b x+a))^{5 / 2}}-\frac{28(b x+a)}{15 b c^{2}(-c \operatorname{LambertW}(b x+a))^{3 / 2}}+\frac{28 \operatorname{erf}\left(\frac{\sqrt{-c \operatorname{LambertW}(b x+a)}}{\sqrt{c}}\right) \sqrt{\pi}}{15 b c^{7 / 2}}\)
Result(type 4, 209 leaves):


Problem 38: Result more than twice size of optimal antiderivative.
\[
\int \frac{\sqrt{c \text { LambertW }(a x)}}{x^{3}} \mathrm{~d} x
\]

Optimal (type 4, 60 leaves, 3 steps):
\[
\frac{2(c \operatorname{LambertW}(a x))^{3 / 2}}{3 c x^{2}}+\frac{2 a^{2} \operatorname{erf}\left(\frac{\sqrt{2} \sqrt{c \operatorname{LambertW}(a x)}}{\sqrt{c}}\right) \sqrt{c} \sqrt{2} \sqrt{\pi}}{3}-\frac{2 \sqrt{c \operatorname{LambertW}(a x)}}{3 x^{2}}
\]

Result(type 4, 121 leaves):
\(2 a^{2} c\left(-\frac{\mathrm{e}^{-2 \operatorname{LambertW}(a x)}}{\sqrt{c \operatorname{LambertW}(a x)}}-\frac{\sqrt{\pi} \sqrt{2} \operatorname{erf}\left(\frac{\sqrt{2} \sqrt{c \operatorname{LambertW}(a x)}}{\sqrt{c}}\right)}{\sqrt{c}}+c\left(-\frac{\mathrm{e}^{-2 \operatorname{LambertW}(a x)}}{3(c \operatorname{LambertW}(a x))^{3 / 2}}\right.\right.\)

\(3 c\)

Problem 42: Unable to integrate problem.


Optimal(type 4, 101 leaves, 3 steps):
\[
\frac{x^{m} \Gamma(m,-(1+m) \operatorname{LambertW}(a x))(-(1+m) \operatorname{LambertW}(a x))^{1-m}}{a \mathrm{e}^{m \operatorname{LambertW}(a x)}(1+m) \operatorname{LambertW}(a x)}+\frac{x^{m} \Gamma(1+m,-(1+m) \operatorname{LambertW}(a x))}{a \mathrm{e}^{m \operatorname{LambertW}(a x)}(1+m)(-(1+m) \operatorname{LambertW}(a x))^{m}}
\]

Result(type 8, 12 leaves):
\[
\int \frac{x^{m}}{\operatorname{LambertW}(a x)} \mathrm{d} x
\]

Problem 43: Unable to integrate problem.
\[
\int \frac{x^{m}}{\text { LambertW }(a x)^{2}} \mathrm{~d} x
\]

Optimal(type 4, 109 leaves, 3 steps):
\(\frac{x^{m} \Gamma(m,-(1+m) \operatorname{LambertW}(a x))(-(1+m) \operatorname{LambertW}(a x))^{1-m}}{a \mathrm{e}^{m \operatorname{LambertW}(a x)}(1+m) \operatorname{LambertW}(a x)}+\frac{x^{m} \Gamma(-1+m,-(1+m) \operatorname{LambertW}(a x))(-(1+m) \operatorname{LambertW}(a x))^{2-m}}{a \mathrm{e}^{m \operatorname{LambertW}(a x)}(1+m) \operatorname{LambertW}(a x)^{2}}\) Result(type 8, 12 leaves):


Problem 49: Unable to integrate problem.
\[
\int \frac{\text { LambertW }\left(a x^{2}\right)^{3}}{x^{9}} \mathrm{~d} x
\]

Optimal(type 4, 28 leaves, 2 steps):
\[
-\frac{3 a^{4} \operatorname{Ei}\left(-4 \operatorname{LambertW}\left(a x^{2}\right)\right)}{2}-\frac{\operatorname{LambertW}\left(a x^{2}\right)^{3}}{2 x^{8}}
\]

Result(type 8, 14 leaves):
\[
\int \frac{\text { LambertW }\left(a x^{2}\right)^{3}}{x^{9}} \mathrm{~d} x
\]

Problem 51: Unable to integrate problem.
\[
\int \frac{1}{x^{3} \operatorname{LambertW}\left(a x^{2}\right)} \mathrm{d} x
\]

Optimal(type 4, 31 leaves, 4 steps):
\[
-\frac{1}{4 x^{2}}-\frac{a \operatorname{Ei}\left(-\operatorname{LambertW}\left(a x^{2}\right)\right)}{4}-\frac{1}{4 x^{2} \operatorname{LambertW}\left(a x^{2}\right)}
\]

Result(type 8, 14 leaves):
\[
\int \frac{1}{x^{3} \operatorname{LambertW}\left(a x^{2}\right)} \mathrm{d} x
\]

Problem 52: Unable to integrate problem.
\[
\int \frac{x^{7}}{\text { LambertW }\left(a x^{2}\right)^{2}} \mathrm{~d} x
\]

Optimal(type 4, 40 leaves, 3 steps):
\[
-\frac{x^{8}}{64 \operatorname{LambertW}\left(a x^{2}\right)^{4}}+\frac{x^{8}}{16 \operatorname{LambertW}\left(a x^{2}\right)^{3}}+\frac{x^{8}}{8 \operatorname{LambertW}\left(a x^{2}\right)^{2}}
\]

Result(type 8, 14 leaves):
\[
\int \frac{x^{7}}{\text { LambertW }\left(a x^{2}\right)^{2}} \mathrm{~d} x
\]

Problem 58: Unable to integrate problem.
\[
\int \frac{\sqrt{c \text { LambertW }\left(a x^{2}\right)}}{x^{3}} \mathrm{~d} x
\]

Optimal(type 4, 40 leaves, 2 steps):
\[
-\frac{a \operatorname{erf}\left(\frac{\sqrt{c \operatorname{LambertW}\left(a x^{2}\right)}}{\sqrt{c}}\right) \sqrt{c} \sqrt{\pi}}{2}-\frac{\sqrt{c \operatorname{LambertW}\left(a x^{2}\right)}}{x^{2}}
\]

Result(type 8, 16 leaves):
\[
\int \frac{\sqrt{c \text { LambertW }\left(a x^{2}\right)}}{x^{3}} \mathrm{~d} x
\]

Problem 59: Unable to integrate problem.
\[
\int \frac{\sqrt{c \text { LambertW }\left(a x^{2}\right)}}{x^{7}} \mathrm{~d} x
\]

Optimal(type 4, 84 leaves, 4 steps):
\[
\frac{\left(c \operatorname{LambertW}\left(a x^{2}\right)\right)^{3 / 2}}{15 c x^{6}}-\frac{2\left(c \operatorname{LambertW}\left(a x^{2}\right)\right)^{5 / 2}}{5 c^{2} x^{6}}-\frac{2 a^{3} \operatorname{erf}\left(\frac{\sqrt{3} \sqrt{c \operatorname{LambertW}\left(a x^{2}\right)}}{\sqrt{c}}\right) \sqrt{c} \sqrt{3} \sqrt{\pi}}{5}-\frac{\sqrt{c \operatorname{LambertW}\left(a x^{2}\right)}}{5 x^{6}}
\]

Result(type 8, 16 leaves):
\[
\int \frac{\sqrt{c \text { LambertW }\left(a x^{2}\right)}}{x^{7}} \mathrm{~d} x
\]

Problem 60: Unable to integrate problem.
\[
\int \frac{x^{5}}{\sqrt{c \text { LambertW }\left(a x^{2}\right)}} \mathrm{d} x
\]

Optimal(type 4, 82 leaves, 4 steps):
\[
-\frac{c^{2} x^{6}}{72\left(c \operatorname{LambertW}\left(a x^{2}\right)\right)^{5 / 2}}+\frac{c x^{6}}{36\left(c \operatorname{LambertW}\left(a x^{2}\right)\right)^{3 / 2}}+\frac{\operatorname{erfi}\left(\frac{\left.\sqrt{3} \sqrt{c \operatorname{LambertW}\left(a x^{2}\right)}\right) \sqrt{3} \sqrt{\pi}}{\sqrt{c}}\right.}{432 a^{3} \sqrt{c}}+\frac{x^{6}}{6 \sqrt{c \operatorname{LambertW}\left(a x^{2}\right)}}
\]

Result(type 8, 16 leaves):
\[
\int \frac{x^{5}}{\sqrt{c \operatorname{LambertW}\left(a x^{2}\right)}} d x
\]

Problem 61: Unable to integrate problem.

\[
\frac{c x^{4}}{16\left(c \operatorname{LambertW}\left(a x^{2}\right)\right)^{3 / 2}}-\frac{\operatorname{erfi}\left(\frac{\sqrt{2} \sqrt{c \operatorname{LambertW}\left(a x^{2}\right)}}{\sqrt{c}}\right) \sqrt{2} \sqrt{\pi}}{64 a^{2} \sqrt{c}}+\frac{x^{4}}{4 \sqrt{c \operatorname{LambertW}\left(a x^{2}\right)}}
\]

Result(type 8, 16 leaves):


Problem 62: Unable to integrate problem.
\[
\int \frac{x^{2}}{\sqrt{c \operatorname{LambertW}\left(a x^{2}\right)}} d x
\]

Optimal(type 4, 32 leaves, 2 steps):
\[
\frac{c x^{3}}{9\left(c \operatorname{LambertW}\left(a x^{2}\right)\right)^{3 / 2}}+\frac{x^{3}}{3 \sqrt{c \operatorname{LambertW}\left(a x^{2}\right)}}
\]

Result(type 8, 16 leaves):
\[
\int \frac{x^{2}}{\sqrt{c \operatorname{LambertW}\left(a x^{2}\right)}} d x
\]

Problem 64: Unable to integrate problem.
\[
\int \frac{1}{x^{5} \sqrt{c \operatorname{LambertW}\left(a x^{2}\right)}} d x
\]

Optimal(type 4, 84 leaves, 4 steps):


Result(type 8, 16 leaves):
\[
\int \frac{1}{x^{5} \sqrt{c \text { LambertW }\left(a x^{2}\right)}} \mathrm{d} x
\]

Problem 66: Result more than twice size of optimal antiderivative. \(\int x\left(c \text { LambertW }\left(a x^{2}\right)\right)^{p} \mathrm{~d} x\)
Optimal(type 4, 56 leaves, 3 steps):

\title{
\(\frac{x^{2}\left(c \operatorname{LambertW}\left(a x^{2}\right)\right)^{p}}{2}-\frac{p \Gamma\left(1+p,-\operatorname{LambertW}\left(a x^{2}\right)\right)\left(c \operatorname{LambertW}\left(a x^{2}\right)\right)^{p}}{2 a\left(-\operatorname{LambertW}\left(a x^{2}\right)\right)^{p}}\)
}

Result(type 4, 253 leaves):
\(\frac{1}{2 a}\left((-1)^{-p}\left(c \operatorname{LambertW}\left(a x^{2}\right)\right)^{p} \operatorname{LambertW}\left(a x^{2}\right)^{-p}\left(\operatorname{LambertW}\left(a x^{2}\right)^{p}(-1)^{p}(1+p) p \Gamma(p)\left(-\operatorname{LambertW}\left(a x^{2}\right)\right)^{-p}\right.\right.\)
\[
\begin{aligned}
& \left.+\frac{\operatorname{LambertW}\left(a x^{2}\right)^{p}(-1)^{p}\left(\operatorname{LambertW}\left(a x^{2}\right)-p-1\right) a x^{2}}{\operatorname{LambertW}\left(a x^{2}\right)}-\operatorname{LambertW}\left(a x^{2}\right)^{p}(-1)^{p}(1+p) p\left(-\operatorname{LambertW}\left(a x^{2}\right)\right)^{-p} \Gamma\left(p,-\operatorname{LambertW}\left(a x^{2}\right)\right)\right) \\
& -(-1)^{-p}\left(c \operatorname{LambertW}\left(a x^{2}\right)\right)^{p} \operatorname{LambertW}\left(a x^{2}\right)^{-p}\left(\operatorname{LambertW}\left(a x^{2}\right)^{p}(-1)^{p} p \Gamma(p)\left(-\operatorname{LambertW}\left(a x^{2}\right)\right)^{-p}-\frac{\operatorname{LambertW}\left(a x^{2}\right)^{p}(-1)^{p} a x^{2}}{\operatorname{LambertW}\left(a x^{2}\right)}\right. \\
& \left.\left.-\operatorname{LambertW}\left(a x^{2}\right)^{p}(-1)^{p} p\left(-\operatorname{LambertW}\left(a x^{2}\right)\right)^{-p} \Gamma\left(p,-\operatorname{LambertW}\left(a x^{2}\right)\right)\right)\right)
\end{aligned}
\]

Problem 67: Unable to integrate problem.
\[
\int \frac{\left(c \text { LambertW }\left(a x^{2}\right)\right)^{p}}{x} \mathrm{~d} x
\]

Optimal(type 4, 38 leaves, 2 steps):
\[
\frac{\left(c \text { LambertW }\left(a x^{2}\right)\right)^{p}}{2 p}+\frac{\left(c \text { LambertW }\left(a x^{2}\right)\right)^{1+p}}{2 c(1+p)}
\]

Result(type 8, 16 leaves):
\[
\int \frac{\left(c \text { LambertW }\left(a x^{2}\right)\right)^{p}}{x} \mathrm{~d} x
\]

Problem 73: Unable to integrate problem.
\[
\int x^{2} \sqrt{\text { LambertW }\left(\frac{a}{x}\right)} \mathrm{d} x
\]

Optimal(type 4, 64 leaves, 4 steps):
\[
-\frac{2 x^{3} \operatorname{LambertW}\left(\frac{a}{x}\right)^{3 / 2}}{15}+\frac{4 x^{3} \operatorname{LambertW}\left(\frac{a}{x}\right)^{5 / 2}}{5}+\frac{4 a^{3} \operatorname{erf}\left(\sqrt{3} \sqrt{\operatorname{LambertW}\left(\frac{a}{x}\right)}\right) \sqrt{3} \sqrt{\pi}}{5}+\frac{2 x^{3} \sqrt{\operatorname{LambertW}\left(\frac{a}{x}\right)}}{5}
\]

Result(type 8, 14 leaves):
\[
\int x^{2} \sqrt{\operatorname{LambertW}\left(\frac{a}{x}\right)} d x
\]

Problem 75: Unable to integrate problem.
\[
\int \frac{1}{x^{4} \sqrt{\operatorname{LambertW}\left(\frac{a}{x}\right)}} \mathrm{d} x
\]

Optimal(type 4, 64 leaves, 4 steps):
\[
\frac{1}{36 x^{3} \operatorname{LambertW}\left(\frac{a}{x}\right)^{5 / 2}}-\frac{1}{18 x^{3} \operatorname{LambertW}\left(\frac{a}{x}\right)^{3 / 2}}-\frac{\operatorname{erfi}\left(\sqrt{3} \sqrt{\operatorname{LambertW}\left(\frac{a}{x}\right)}\right) \sqrt{3} \sqrt{\pi}}{216 a^{3}}-\frac{1}{3 x^{3} \sqrt{\operatorname{LambertW}\left(\frac{a}{x}\right)}}
\]

Result(type 8, 14 leaves):
\[
\int \frac{1}{x^{4} \sqrt{\operatorname{LambertW}\left(\frac{a}{x}\right)}} \mathrm{d} x
\]

Problem 76: Unable to integrate problem.
\[
\int x^{2}\left(c \operatorname{LambertW}\left(\frac{a}{x}\right)\right)^{p} \mathrm{~d} x
\]

Optimal(type 4, 120 leaves, 4 steps):
\(\underbrace{3^{3-p} \mathrm{e}^{4 \operatorname{LambertW}\left(\frac{a}{x}\right)} x^{4} \Gamma\left(-3+p, 3 \operatorname{LambertW}\left(\frac{a}{x}\right)\right) \operatorname{LambertW}\left(\frac{a}{x}\right)^{4-p}\left(c \operatorname{LambertW}\left(\frac{a}{x}\right)\right)^{p}}\)
\[
+\frac{3^{2-p} \mathrm{e}^{4 \operatorname{LambertW}\left(\frac{a}{x}\right)} x^{4} \Gamma\left(-2+p, 3 \operatorname{LambertW}\left(\frac{a}{x}\right)\right) \operatorname{LambertW}\left(\frac{a}{x}\right)^{3-p}\left(c \operatorname{LambertW}\left(\frac{a}{x}\right)\right)^{1+p}}{c a}
\]

Result(type 8, 16 leaves):
\[
\int x^{2}\left(c \text { LambertW }\left(\frac{a}{x}\right)\right)^{p} \mathrm{~d} x
\]

Problem 77: Unable to integrate problem.
\[
\int \frac{\left(c \text { LambertW }\left(\frac{a}{x}\right)\right)^{p}}{x} \mathrm{~d} x
\]

Optimal(type 4, 38 leaves, 2 steps):
\(-\frac{\left(c \text { LambertW }\left(\frac{a}{x}\right)\right)^{p}}{p}-\frac{\left(c \operatorname{LambertW}\left(\frac{a}{x}\right)\right)^{1+p}}{c(1+p)}\)

Result(type 8, 16 leaves):
\[
\int \frac{\left(c \text { LambertW }\left(\frac{a}{x}\right)\right)^{p}}{x} \mathrm{~d} x
\]

Problem 81: Unable to integrate problem.
\[
\int \operatorname{LambertW}\left(a x^{n}\right)^{\frac{-1+n}{n}} \mathrm{~d} x
\]

Optimal(type 4, 40 leaves, 2 steps):
\[
\frac{(1-n) x}{\operatorname{LambertW}\left(a x^{n}\right)^{\frac{1}{n}}}+\frac{x}{\operatorname{LambertW}\left(a x^{n}\right)^{\frac{1-n}{n}}}
\]

Result(type 8, 16 leaves):
\[
\int \operatorname{LambertW}\left(a x^{n}\right)^{\frac{-1+n}{n}} \mathrm{~d} x
\]

Problem 82: Unable to integrate problem.
\[
\int \frac{x^{-1-n}}{\sqrt{c \operatorname{LambertW}\left(a x^{n}\right)}} \mathrm{d} x
\]

Optimal(type 4, 71 leaves, 3 steps):
\[
-\frac{2 a \operatorname{erf}\left(\frac{\sqrt{c \operatorname{LambertW}\left(a x^{n}\right)}}{\sqrt{c}}\right) \sqrt{\pi}}{3 n \sqrt{c}}-\frac{2}{3 n x^{n} \sqrt{c \operatorname{LambertW}\left(a x^{n}\right)}}-\frac{2 \sqrt{c \operatorname{LambertW}\left(a x^{n}\right)}}{3 c n x^{n}}
\]

Result(type 8, 20 leaves):
\[
\int \frac{x^{-1-n}}{\sqrt{c \operatorname{LambertW}\left(a x^{n}\right)}} \mathrm{d} x
\]

Problem 83: Unable to integrate problem.
\[
\int x^{-1-2 n}\left(c \operatorname{LambertW}\left(a x^{n}\right)\right)^{11 / 2} \mathrm{~d} x
\]
```

Optimal(type 4, 131 leaves, 5 steps):

- 165\mp@subsup{c}{}{3}(c\operatorname{LambertW (a\mp@subsup{x}{}{n})\mp@subsup{)}{}{5/2}}}

```
\(+\frac{165 a^{2} c^{11 / 2} \operatorname{erf}\left(\frac{\sqrt{2} \sqrt{c \operatorname{LambertW}\left(a x^{n}\right)}}{\sqrt{c}}\right) \sqrt{2} \sqrt{\pi}}{512 n}\)

Result(type 8, 20 leaves):
\[
\int x^{-1-2 n}\left(c \operatorname{LambertW}\left(a x^{n}\right)\right)^{11 / 2} \mathrm{~d} x
\]

Problem 84: Unable to integrate problem.
\[
\int x^{-1-2 n}\left(c \operatorname{LambertW}\left(a x^{n}\right)\right)^{3 / 2} \mathrm{~d} x
\]

Optimal(type 4, 58 leaves, 2 steps):


Result(type 8, 20 leaves):
\[
\int x^{-1-2 n}\left(c \operatorname{LambertW}\left(a x^{n}\right)\right)^{3 / 2} \mathrm{~d} x
\]

Problem 85: Unable to integrate problem.
\[
\int \frac{x^{-1+n}}{\left(c \operatorname{LambertW}\left(a x^{n}\right)\right)^{9 / 2}} \mathrm{~d} x
\]

Optimal(type 4, 111 leaves, 5 steps):
\(-\frac{2 x^{n}}{7 n\left(c \operatorname{LambertW}\left(a x^{n}\right)\right)^{9 / 2}}-\frac{18 x^{n}}{35 c n\left(c \operatorname{LambertW}\left(a x^{n}\right)\right)^{7 / 2}}-\frac{12 x^{n}}{35 c^{2} n\left(c \operatorname{LambertW}\left(a x^{n}\right)\right)^{5 / 2}}-\frac{24 x^{n}}{35 c^{3} n\left(c \operatorname{LambertW}\left(a x^{n}\right)\right)^{3 / 2}}\)
\(+\frac{24 \operatorname{erfi}\left(\frac{\sqrt{c \text { LambertW }\left(a x^{n}\right)}}{\sqrt{c}}\right) \sqrt{\pi}}{35 a c^{9 / 2} n}\)

Result(type 8, 18 leaves):
\[
\int \frac{x^{-1+n}}{\left(c \text { LambertW }\left(a x^{n}\right)\right)^{9 / 2}} \mathrm{~d} x
\]

Problem 86: Unable to integrate problem.
\[
\int \frac{x^{-1+2 n}}{\sqrt{c \operatorname{LambertW}\left(a x^{n}\right)}} \mathrm{d} x
\]

Optimal(type 4, 77 leaves, 3 steps):


Result(type 8, 20 leaves):
\[
\int \frac{x^{-1+2 n}}{\sqrt{c \operatorname{LambertW}\left(a x^{n}\right)}} \mathrm{d} x
\]

Problem 87: Unable to integrate problem.
\[
\int \frac{x^{-1+2 n}}{\left(c \text { LambertW }\left(a x^{n}\right)\right)^{5 / 2}} \mathrm{~d} x
\]

Optimal(type 4, 56 leaves, 2 steps):
\[
-\frac{2 x^{2 n}}{n\left(c \operatorname{LambertW}\left(a x^{n}\right)\right)^{5 / 2}}+\frac{5 \operatorname{erfi}\left(\frac{\sqrt{2} \sqrt{c \operatorname{LambertW}\left(a x^{n}\right)}}{\sqrt{c}}\right) \sqrt{2} \sqrt{\pi}}{2 a^{2} c^{5 / 2} n}
\]

Result(type 8, 20 leaves):
\[
\int \frac{x^{-1+2 n}}{\left(c \operatorname{LambertW}\left(a x^{n}\right)\right)^{5 / 2}} \mathrm{~d} x
\]

Problem 88: Unable to integrate problem.
\[
\int \frac{x^{-1+2 n}}{\left(c \operatorname{LambertW}\left(a x^{n}\right)\right)^{7 / 2}} \mathrm{~d} x
\]

Optimal(type 4, 79 leaves, 3 steps):


Result(type 8, 20 leaves):
\[
\int \frac{x^{-1+2 n}}{\left(c \operatorname{LambertW}\left(a x^{n}\right)\right)^{7 / 2}} \mathrm{~d} x
\]

Problem 89: Unable to integrate problem.
\[
\int \frac{x^{-1+2 n}}{\left(c \operatorname{LambertW}\left(a x^{n}\right)\right)^{11 / 2}} \mathrm{~d} x
\]

Optimal(type 4, 125 leaves, 5 steps): \(-\frac{2 x^{2 n}}{7 n\left(c \operatorname{LambertW}\left(a x^{n}\right)\right)^{11 / 2}}-\frac{22 x^{2 n}}{35 c n\left(c \operatorname{LambertW}\left(a x^{n}\right)\right)^{9 / 2}}-\frac{88 x^{2 n}}{105 c^{2} n\left(c \operatorname{LambertW}\left(a x^{n}\right)\right)^{7 / 2}}-\frac{352 x^{2 n}}{105 c^{3} n\left(c \operatorname{LambertW}\left(a x^{n}\right)\right)^{5 / 2}}\) \(+\frac{352 \operatorname{erfi}\left(\frac{\sqrt{2} \sqrt{c \text { LambertW }\left(a x^{n}\right)}}{\sqrt{c}}\right) \sqrt{2} \sqrt{\pi}}{105 a^{2} c^{11 / 2} n}\)

Result(type 8, 20 leaves):
\[
\int \frac{x^{-1+2 n}}{\left(c \text { LambertW }\left(a x^{n}\right)\right)^{11 / 2}} \mathrm{~d} x
\]

Problem 90: Unable to integrate problem.
\[
\int x^{-1-2 n} \operatorname{LambertW}\left(a x^{n}\right)^{3} \mathrm{~d} x
\]

Optimal(type 4, 41 leaves, 2 steps):
\[
-\frac{3 \text { LambertW }\left(a x^{n}\right)^{2}}{4 n x^{2 n}}-\frac{\text { LambertW }\left(a x^{n}\right)^{3}}{2 n x^{2 n}}
\]

Result(type 8, 18 leaves):
\[
\int x^{-1-2 n} \operatorname{LambertW}\left(a x^{n}\right)^{3} \mathrm{~d} x
\]

Problem 91: Unable to integrate problem.
\[
\int \frac{x^{-1+2 n}}{\text { LambertW }\left(a x^{n}\right)} \mathrm{d} x
\]

Optimal(type 4, 37 leaves, 2 steps):
\[
\frac{x^{2 n}}{4 n \operatorname{LambertW}\left(a x^{n}\right)^{2}}+\frac{x^{2 n}}{2 n \operatorname{LambertW}\left(a x^{n}\right)}
\]

Result(type 8, 18 leaves):
\[
\int \frac{x^{-1+2 n}}{\operatorname{LambertW}\left(a x^{n}\right)} \mathrm{d} x
\]

Problem 93: Unable to integrate problem.
\[
\int x^{-1+n(2-p)}\left(c \operatorname{LambertW}\left(a x^{n}\right)\right)^{p} \mathrm{~d} x
\]

Optimal(type 4, 102 leaves, 3 steps):
\[
\frac{c^{2} p x^{n(2-p)}\left(c \operatorname{LambertW}\left(a x^{n}\right)\right)^{-2+p}}{n(2-p)^{3}}-\frac{c p x^{n(2-p)}\left(c \operatorname{LambertW}\left(a x^{n}\right)\right)^{p-1}}{n(2-p)^{2}}+\frac{x^{n(2-p)}\left(c \operatorname{LambertW}\left(a x^{n}\right)\right)^{p}}{n(2-p)}
\]

Result(type 8, 24 leaves):
\[
\int x^{-1+n(2-p)}\left(c \operatorname{LambertW}\left(a x^{n}\right)\right)^{p} \mathrm{~d} x
\]

\section*{Summary of Integration Test Results}

525 integration problems


A - 339 optimal antiderivatives
B - 43 more than twice size of optimal antiderivatives
C - 9 unnecessarily complex antiderivatives
D - 134 unable to integrate problems
E - O integration timeouts```


[^0]:    Problem 74: Unable to integrate problem.

[^1]:    Result(type 8, 19 leaves):

